Bài viết Cách giải hệ phương trình đối xứng loại 1 lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải hệ phương trình đối xứng loại 1.
Cách giải hệ phương trình đối xứng loại 1 lớp 9 (cực hay)
(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST
A. Phương pháp giải
Hệ phương trình đối xứng loại I theo ẩn x và y làHệ phương trình mà khi ta đổi vai trò của các ẩn x và y thìHệ phương trình vẫn không thay đổi.
Hệ phương trình đối xứng loại I có dạng
Bước 1: Đặt S = x + y, P = xy. Điều kiện: S2 ≥ 4P.
Bước 2: Biến đổi Hệ phương trình có hai ẩn S, P giải ra S và P (sử dụng phương pháp thế hoặc cộng đại số).
Bước 3: Tìm được S và P, khi đó x và y là nghiệm của phương trình bậc hai:
X2 – SX + P = 0
Giải phương trình bậc hai theo ẩn X.
Bước 4: Kết luận nghiệm của hệ phương trình.
Chú ý: Nếu (x0;y0) là nghiệm củaHệ phương trình thì (y0;x0) cũng là nghiệm của hệ phương trình.
B. Ví dụ minh họa
Ví dụ 1: Giải hệ phương trình .
Hướng dẫn:
Ví dụ 2: Giải hệ phương trình .
Hướng dẫn:
Vậy hệ phương trình có nghiệm là (1;3), (3;1).
Ví dụ 3: Giải hệ phương trình .
Hướng dẫn:
Điều kiện xác định: x ≥ 0; y ≥ 0.
C. Bài tập trắc nghiệm
Câu 1: Hệ phương trình sau có bao nhiêu nghiệm:
A. 1
B. 2
C. 3
D. 4
Lời giải:
Vậy hệ phương trình có 2 nghiệm là (1;2), (2;1).
Chọn đáp án B.
Câu 2: Hệ phương trình sau có bao nhiêu nghiệm:
A. 1
B. 2
C. 3
D. 4
Lời giải:
Với S = 0 ⇒ P = -3 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Với S = -2 ⇒ P = 1 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Chọn đáp án C.
Câu 3: Hệ phương trình sau có bao nhiêu nghiệm:
A. 1
B. 2
C. 3
D. 4
Lời giải:
Với S = – 8 ⇒ P = 13 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Với S = 3 ⇒ P = 2 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (1; 2); (2;1)
Vậy hệ phương trình có 4 nghiệm là: (1; 2); (2;1); .
Chọn đáp án D.
Câu 4: Hệ phương trình sau: . Chọn nghiệm đúng của hệ phương trình.
A. (4;7) và (7;4)
B. (-1;-8) và (-8;-1)
C. (1;2) và (2;1)
D. A và B
Lời giải:
Với S = – 9 ⇒ P = 8 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là:(-1; -8); (-8; -1);
Với S = 11 ⇒ P = 28 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (4;7); (7;4)
Vậy hệ phương trình có 4 nghiệm là: (4;7); (7;4); (-1;-8); (-8;-1).
Chọn đáp án D.
Câu 5: Hệ phương trình sau: . Đâu không phải là nghiệm đúng của hệ phương trình.
A. (1;6) và (6;1)
B. (2;3) và (3;2)
C. (-3;-7)
D. (-7;-3)
Lời giải:
Với S = – 10 ⇒ P = 21 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là:(-3; -7); (-7; -3);
Với S = 5 ⇒ P = 6 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (2; 3); (3;2);
Vậy hệ phương trình có 4 nghiệm là: (2; 3); (3;2); (-3; -7); (-7; -3).
Chọn đáp án A.
Câu 6: Hệ phương trình sau: . Khẳng định nào sau đây không đúng?
A. Hệ phương trình có 2 nghiệm.
B. Hệ phương trình vô số nghiệm.
C. Một nghiệm của hệ là: (-2;3).
D. Nghiệm của hệ là: (-2;3); ((3;-2).
Lời giải:
Với S = 1 ⇒ P = – 6 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Vậy hệ có 2 nghiệm là:(3;-2); (-2;3).
Chọn đáp án B.
Câu 7: Hệ phương trình sau: . Khẳng định nào sau đây không sai?
A. Hệ phương trình có 1 nghiệm.
B. Hệ phương trình vô số nghiệm.
C. Một nghiệm của hệ là: (-2; 0).
D. Nghiệm của hệ là: (2; 0);(0; 2).
Lời giải:
Với S = 2 ⇒ P = 0 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Vậy hệ có 2 nghiệm là:(0; 2); (2; 0).
Chọn đáp án D.
Câu 8: Hệ phương trình sau: . Khẳng định nào sau đây sai ?
A. Hệ phương trình có 4 nghiệm.
B. Hai nghiệm (1;2) và (2;1) là nghiệm của hệ phương trình.
C. Hệ phương trình có 2 nghiệm.
D. A, B đúng.
Lời giải:
Với S = – 2 ⇒ P = – 3 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là:(-3; 1); (1; -3)
Với S = 3 ⇒ P = 2 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (1; 2); (2; 1);
Vậy hệ phương trình có 4 nghiệm là: (1; 2); (2; 1); (-3; 1); (1; -3).
Chọn đáp án C.
Câu 9: Hệ phương trình sau: . Khẳng định nào sau đây đúng?
A. Hệ phương trình có 2 nghiệm.
B. Hệ phương trình 4 nghiệm.
C. Một nghiệm của hệ là: (2; 4).
D. Hai nghiệm của hệ là (2;4); (4;2)
Lời giải:
Với S = 5 ⇒ P = 6 ™, Khi đó x và y là nghiệm của phương trình bậc hai.
Vậy hệ có 2 nghiệm là: (2; 3); (3; 2).
Chọn đáp án A.
Câu 10: Cho hệ phương trình: . Với giá trị nào của m để hệ có nghiệm thực?
Lời giải:
Chọn đáp án B.
D. Bài tập tự luyện
Bài 1. Tập nghiệm của các hệ phương trình sau:
a) x3+y3=8x+y+2xy=2
b) x+y-xy=3x+1+y+1=4
c) (x-y)(1+1xy)=5(x2+y2)(1+1x2y2)=9
Bài 2. Cho hệ phương trình: x2+y2+2xy=82x+y=4
a) Hãy tìm điều kiện xác định;
b) Giải hệ phương trình đã cho;
c) Tính 3×2 – 5y + 1.
Bài 3. Cho hệ phương trình: xy+yx=7xy+1x3y+y3x=78. Hệ phương trình có bao nhiêu nghiệm?
Bài 4. Tìm m để hệ phương trình sau có nghiệm: x+1x+y+1y=5×3+1×3+y3+1y3=15m-10
Bài 5. Cho x, y, z là nghiệm của hệ phương trình x2+y2+z2=8xy+yz+zx=4. Chứng minh rằng: -83≤x,y,z≤83?
(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án chi tiết hay khác:
-
HPT đối xứng loại II.
-
Cách giải hệ phương trình đặc biệt, nâng cao cực hay
-
Giáo án Lịch sử 8 Bài toán năng suất công việc.
-
Giáo án Lịch sử 8 Bài toán cấu tạo số
-
Giáo án Lịch sử 8 Bài toán thực tế.
- Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án