Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Bảng Nguyên Hàm Và Công Thức Nguyên Hàm Đầy Đủ Nhất & Bài Tập

by Tranducdoan
04/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Trong chương trình toán 12 nguyên hàm là phần kiến thức đóng vai trò quan trọng, đặc biệt là khi học về hàm số. Ngoài ra, các bài tập về nguyên hàm xuất hiện rất nhiều trong các đề thi THPT QG những năm gần đây. Tuy nhiên, kiến thức về nguyên hàm rất rộng lớn và khá thử thách đối với các bạn học sinh lớp 12. Cùng VUIHOC tìm hiểu và chinh phục các công thức nguyên hàm để dễ dàng hơn trong việc giải các bài tập liên quan nhé!

Mục Lục Bài Viết

  1. 1. Lý thuyết nguyên hàm
    1. 1.1. Định nghĩa nguyên hàm là gì?
    2. 2.2. Tính chất của nguyên hàm
  2. 2. Tổng hợp đầy đủ các công thức nguyên hàm dành cho học sinh lớp 12
    1. 2.1. Bảng công thức nguyên hàm cơ bản
    2. 2.2. Bảng công thức nguyên hàm nâng cao
    3. 2.3. Bảng công thức nguyên hàm mở rộng
  3. 3. Bảng công thức nguyên hàm lượng giác
  4. 4. Các phương pháp tính nguyên hàm nhanh nhất và bài tập từ cơ bản đến nâng cao
    1. 4.1. Công thức nguyên hàm từng phần
    2. 4.2. Phương pháp tính nguyên hàm hàm số lượng giác
    3. 4.3. Cách tính nguyên hàm của hàm số mũ

1. Lý thuyết nguyên hàm

1.1. Định nghĩa nguyên hàm là gì?

Trong chương trình toán giải tích Toán 12 đã học, nguyên hàm được định nghĩa như sau:

Một nguyên hàm của một hàm số thực cho trước f là một F có đạo hàm bằng f, nghĩa là, $F’=f$. Cụ thể:

Cho hàm số f xác định trên K. Nguyên hàm của hàm số f trên K tồn tại khi $F(x)$ tồn tại trên K và $F’(x)=f(x)$ (x thuộc K).

Ta có thể xét ví dụ sau để hiểu hơn về định nghĩa nguyên hàm:

Hàm số $f(x)=cosx$ có nguyên hàm là $F(x)=sinx$ vì $(sinx)’=cosx$ (tức $F’(x)=f(x)$).

2.2. Tính chất của nguyên hàm

Xét hai hàm số liên tục g và f trên K:

  • $int [f(x)+g(x)]dx=int f(x)dx+int g(x)dx$
  • $int kf(x)dx=kint f(x)$ (với mọi số thực k khác 0)

Ta cùng xét ví dụ dưới đây minh họa cho tính chất của nguyên hàm:

$int sin^{2}xdx=intfrac{1-cos2x}{2}dx=frac{1}{2}int dx-frac{1}{2}int cos2xdx=frac{x}{2}-frac{sin2x}{4}+C$

>> Xem thêm: Cách xét tính liên tục của hàm số, bài tập và ví dụ minh họa

2. Tổng hợp đầy đủ các công thức nguyên hàm dành cho học sinh lớp 12

2.1. Bảng công thức nguyên hàm cơ bản

Bảng công thức nguyên hàm cơ bản

2.2. Bảng công thức nguyên hàm nâng cao

Bảng công thức nguyên hàm nâng cao

>>>Cùng thầy cô VUIHOC nắm trọn kiến thức nguyên hàm – Ẵm điểm 9+ thi tốt nghiệp THPT ngay<<<

nguyen ham co ban

2.3. Bảng công thức nguyên hàm mở rộng

Tổng hợp công thức nguyên hàm mở rộng

3. Bảng công thức nguyên hàm lượng giác

Bảng nguyên hàm lượng giác thường gặp - công thức nguyên hàm

4. Các phương pháp tính nguyên hàm nhanh nhất và bài tập từ cơ bản đến nâng cao

Để dễ dàng hơn trong việc thuộc các công thức nguyên hàm, các em học sinh cần chăm chỉ giải các bài tập áp dụng các phương pháp và công thức nguyên hàm tương ứng. Sau đây, VUIHOC sẽ hướng dẫn các em 4 phương pháp tìm nguyên hàm.

4.1. Công thức nguyên hàm từng phần

Để giải các bài tập áp dụng phương pháp nguyên hàm từng phần, trước tiên học sinh cần nắm được định lý sau:

$int u(x).v'(x)dx=u(x).v(x)-int u(x).u'(x)dx$

Hay $int udv=uv-int vdu$

Với $du=u'(x)dx, dv=v'(x)dx)$

Ta cùng xét 4 trường hợp xét nguyên hàm từng phần (với P(x) là một đa thức theo ẩn x)

Ví dụ minh họa: Tìm họ nguyên hàm của hàm số $int xsinxdx$

Giải:

Các trường hợp nguyên hàm từng phần - nguyên hàm toán 12

4.2. Phương pháp tính nguyên hàm hàm số lượng giác

Trong phương pháp này, có một số dạng nguyên hàm lượng giác thường gặp trong các bài tập và đề thi trong chương trình học. Cùng VUIHOC điểm qua một số cách tìm nguyên hàm của hàm số lượng giác điển hình nhé!

Dạng 1: $I=int frac{dx}{sin(x+a)sin(x+b)}$

  • Phương pháp tính:

Dùng đồng nhất thức:

$I=int frac{sin(a-b)}{sin(a-b)}=frac{sin[(x+a)-(x+b)]}{sin(a-b)}=frac{sin(x+a)cos(x+b)-cos(x+a)sin(x+b)}{sin(a-b)}$

Từ đó suy ra:

$I=frac{1}{sin(a-b)}int frac{sin(x+a)cos(x+b)-cos(x+a)sin(x+b)}{sin(x+a)sin(x+b)}dx$

$=frac{1}{sin(a-b)}int [frac{cos(x+b)}{sin(x+b)}]-frac{cos(x+a)}{sin(x+a)}]dx$

$=frac{1}{sin(a-b)}[lnsin(x+b)-lnsin(x+a)]+C$

  • Ví dụ áp dụng:

Tìm nguyên hàm sau đây: $I=int frac{dx}{sinxsin(x+frac{pi}{6})}$

Giải:

Ví dụ minh họa bài tập nguyên hàm

Dạng 2: $I=int tan(x+a)tan(x+b)dx$

  • Phương pháp tính:

Phương pháp tìm nguyên hàm hàm số lượng giác

  • Ví dụ áp dụng: Tìm nguyên hàm sau đây: $K=int tan(x+frac{pi}{3}cot(x+frac{pi}{6})dx$

Giải:

Phương pháp tìm nguyên hàm hàm số lượng giác

Dạng 3: $I=int frac{dx}{asinx+bcosx}$

  • Phương pháp tính:

  • Ví dụ minh họa: Tìm nguyên hàm I=$int frac{2dx}{sqrt{3}sinx+cosx}$

Ví dụ minh họa - bài tập tìm nguyên hàm hàm số lượng giác

Dạng 4: $I=int frac{dx}{asinx+bcosx+c}$

  • Phương pháp tính:

Phương pháp tìm nguyên hàm hàm số lượng giác - dạng 4

  • Ví dụ áp dụng: Tìm nguyên hàm sau đây: $I=int frac{dx}{3cosx+5sinx+3}$

Bài tập tìm nguyên hàm hàm số lượng giác

nguyen ham co ban 1

4.3. Cách tính nguyên hàm của hàm số mũ

Để áp dụng giải các bài tập tìm nguyên hàm của hàm số mũ, học sinh cần nắm vững bảng nguyên hàm của các hàm số mũ cơ bản sau đây:

Bảng nguyên hàm hàm số mũ - công thức nguyên hàm

Sau đây là ví dụ minh họa phương pháp tìm nguyên hàm hàm số mũ:

Xét hàm số sau đây: y=$5.7^{x}+x^{2}$

Giải:

Ta có nguyên hàm của hàm số đề bài là:

Chọn đáp án A

4.4. Phương pháp nguyên hàm đặt ẩn phụ (đổi biến số)

Phương pháp đổi biến số có hai dạng dựa trên định lý sau đây:

  • Nếu $int f(x)dx=F(x)+C$ và $u=varphi (x)$ là hàm số có đạo hàm thì $int f(u)du=F(u) + C$

  • Nếu hàm số f(x) liên tục thì khi đặt $x=varphi(t)$ trong đó $varphi(t)$ cùng với đạo hàm của nó $varphi'(t)$ là những hàm số liên tục, ta sẽ được: $int f(x)=int f(varphi(t)).varphi'(t)dt$

Từ phương pháp chung, ta có thể phân ra làm hai bài toán về phương pháp nguyên hàm đặt ẩn phụ như sau:

Bài toán 1: Sử dụng phương pháp đổi biến số dạng 1 tìm nguyên hàm $I=f(x)dx$

Phương pháp:

  • Bước 1: Chọn $x=varphi(t)$, trong đó $varphi(t)$ là hàm số mà ta chọn cho thích hợp

  • Bước 2: Lấy vi phân 2 vế, $dx=varphi'(t)dt$

  • Bước 3: Biển thị $f(x)dx$ theo t và dt: $f(x)dx=f(varphi (t)).varphi’ (t)dt=g(t)dt$

  • Bước 4: Khi đó $I=int g(t)dt=G(t)+C$

Ví dụ minh họa:

Tìm nguyên hàm của $I=int frac{dx}{sqrt{(1-x^{2})^{3}}}$

Giải:

Bài tập minh họa phương pháp nguyên hàm đặt ẩn phụ

Bài toán 2: Sử dụng phương pháp đổi biến số dạng 2 tìm nguyên hàm $I=int f(x)dx$

Phương pháp:

  • Bước 1: Chọn $t=psi (x)$ trong đó $psi (x)$ là hàm số mà ta chọn cho thích hợp

  • Bước 2: Tính vi phân 2 vế: $dt=psi ‘(x)dx$

  • Bước 3: Biểu thị $f(x)dx$ theo t và dt: $f(x)dx=f[psi (x)].psi'(x)dt=g(t)dt$

  • Bước 4: Khi đó$ I=int g(t)dt=G(t)+C$

Ví dụ minh họa:

Tìm nguyên hàm $I=int x^{3}(2-3x^{2})^{8}dx$

Bài tập minh họa phương pháp nguyên hàm đặt ẩn phụ

Trên đây là toàn bộ kiến thức cơ bản và tổng hợp đầy đủ công thức nguyên hàm cần nhớ. Hy vọng rằng sau bài viết này, các em học sinh sẽ có thể áp dụng công thức để giải các bài tập nguyên hàm từ cơ bản đến nâng cao. Để học và ôn tập nhiều hơn những phần công thức Toán 12 phục vụ ôn thi THPT QG, truy cập Vuihoc.vn và đăng ký khóa học ngay từ hôm nay nhé!

>> Xem thêm:

  • Công thức nguyên hàm lnx và cách giải các dạng bài tập
  • Tính nguyên hàm của tanx bằng công thức cực hay
  • Phương pháp tính tích phân từng phần và ví dụ minh họa
Previous Post

Từ vựng tiếng Trung chuyên ngành nội thất

Next Post

Nghĩ thêm về bài thơ “Thuật hoài” của Phạm Ngũ Lão

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Toán 7 Bài 4: Thứ tự thực hiện các phép tính. Quy tắc chuyển vế

by Tranducdoan
15/01/2026
0
0

Giải Toán 7 Bài 4: Thứ tự thực hiện các phép tính. Quy tắc chuyển vế hướng dẫn giải các...

Nguyên hàm và tích phân hàm lượng giác

by Tranducdoan
15/01/2026
0
0

Tài liệu gồm 32 trang được biên soạn bởi các tác giả: Nguyễn Minh Tuấn và Phạm Việt Anh, hướng...

Một vài biện pháp giúp học sinh nâng cao chất lượng dạy và học giải phương trình tích môn Đại số 8 ở trường THCS Phú Cường.

by Tranducdoan
15/01/2026
0
0

TRANG THÔNG TIN SÁNG KIẾN- Tên sáng kiến: Một vài biện pháp giúp học sinh nâng cao chất lượng dạy...

Toán 12 Kết nối tri thức Bài 15: Phương trình đường thẳng trong không gian

by Tranducdoan
15/01/2026
0
0

Với giải bài tập Toán 12 Bài 15: Phương trình đường thẳng trong không gian sách Kết nối tri thức...

Load More
Next Post

Nghĩ thêm về bài thơ “Thuật hoài” của Phạm Ngũ Lão

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Trò chống hay Trò trống? Viết sao mới đúng chính tả tiếng Việt?

15/01/2026

Natri hydroxide

15/01/2026

Tổng hợp những bài thơ 5 chữ hay, đa dạng chủ đề

15/01/2026
Xoilac TV trực tiếp bóng đá Socolive trực tiếp 789bet https://pihu.in.net/
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.