3. Mô tả bản chất của sáng kiến:
3.1. Tình trạng giải pháp đã biết:
Sau nhiều năm trực tiếp giảng dạy học sinh và bồi dưỡng đội tuyển học sinh giỏi lớp 8, 9 tôi nhận thấy trong việc giảng dạy môn đại số còn nhiều mảng kiến thức mà học sinh còn nhiều lúng túng.Các bài toán về biến đổi các biểu thức hữu tỉ, giá trị của phân thức là một dạng toán cơ bản và thường gặp với học sinh lớp 8, 9 đặc biệt trong kì thi tuyển sinh vào THPT. Học sinh lớp 8 mới làm quen với phân thức đại số, các phép biến đổi phân thức đại số nên các em còn gặp nhiều lúng túng, kĩ năng biến đổi các biểu thức hữu tỉ chưa được tốt và còn những hạn chế trong việc xử lí các câu hỏi của dạng bài tập này. Với một bộ phận HS có lực học trung bình còn có tâm lí ”sợ” khi gặp bài tập rút gọn biểu thức. Trong khi đó thời lượng chương trình dành cho loại toán này chưa nhiều ( thời lượng chương trình 2 tiết: bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức (trang 55 – 59 SGK toán 8 tập 1), nội dung dạng toán lại đa dạng và thường xuyên xuất hiện trong các đề kiểm tra, đề thi chọn HSG đặc biệt trong các đề thi tuyển sinh vào THPT.
Bằng kinh nghiệm giảng dạy của mình và qua việc tìm hiểu tâm lí đối tượng học sinh, đặc biệt trong quá trình bồi dưỡng học sinh giỏi lớp 8, 9 và ôn tuyển sinh vào THPT tôi nhận thấy các bài tập về biến đổi các biểu thức hữu tỉ, giá trị của phân thức học sinh còn rất lúng túng, vì vậy tôi đã quyết định tiến hành nghiên cứu đề tài “Kinh nghiệm giảng dạy chuyên đề : Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức”.
3.2. Nội dung giải pháp đề nghị công nhận là sáng kiến:
– Mục đích của giải pháp : Phương pháp giải các bài toán biến đổi các biểu thức hữu tỉ, giá trị của phân thức với mục đích định ra hướng, phương pháp nhận dạng, phương pháp giải với các dạng bài tập chủ yếu. Ngoài ra chuyên đề còn đưa ra cho học sinh phương pháp, kĩ năng trình bày lời giải hợp lí nhất.
Nội dung của đề tài góp phần nâng cao kiến thức, tư duy toán học, khả năng phân tích, tính toán cho học sinh đồng thời giúp cho giáo viên lựa chọn phương pháp hợp lí, phù hợp với từng bài, từng đối tượng học sinh để giúp cho giáo viên và học sinh giải quyết tốt vấn đề này.





