Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Lý thuyết tổng hợp chương Phương pháp tọa độ trong không gian lớp 12 (hay, chi tiết)

by Tranducdoan
30/12/2025
in Toán tổng hợp
0
Đánh giá bài viết

Bài viết Lý thuyết tổng hợp chương Phương pháp tọa độ trong không gian lớp 12 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết tổng hợp chương Phương pháp tọa độ trong không gian.

Mục Lục Bài Viết

  1. Lý thuyết tổng hợp chương Phương pháp tọa độ trong không gian
    1. A. Tóm tắt lý thuyết

Lý thuyết tổng hợp chương Phương pháp tọa độ trong không gian

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

A. Tóm tắt lý thuyết

** HỆ TỌA ĐỘ TRONG KHÔNG GIAN

1. Hệ trục tọa độ trong không gian

Trong không gian, xét ba trục tọa độ Ox, Oy, Oz vuông góc với nhau từng đôi một và chung một điểm gốc O. Gọi i→, j→, k→ là các vectơ đơn vị, tương ứng trên các trục Ox, Oy, Oz. Hệ ba trục như vậy gọi là hệ trục tọa độ vuông góc trong không gian.

Chú ý:

2. Tọa độ của vectơ

a) Định nghĩa: u→ = (x; y; z) ⇔ k→ = xi→ + yj→ + zk→

b) Tính chất: Cho a→ = (a1; a2; a3), b→ = (b1; b2; b3), k ∈ R

• a→ ± b→ = (a1 ± b1; a2 ± b2; a3 ± b3; )

• ka→ = (ka1; ka2; ka3)

• 0→ = (0; 0; 0), i→ = (1; 0; 0), j→ = (0; 1; 0), k→ = (0; 0; 1)

• a→ cùng phương b→ (b→ ≠ 0→) ⇔ a→ = kb→ (k ∈ R)

• a→.b→ = a1.b1 + a2.b2 + a3.b3

• a→ ⊥ b→ ⇔ a1b1 + a2b2 + a3b3 = 0

3. Tọa độ của điểm

a) Định nghĩa: M(x; y; z) ⇔ OM→ = x.i→ + y.j→ + z.k→ (x : hoành độ, y : tung độ, z : cao độ)

Chú ý: • M ∈ (Oxy) ⇔ z = 0; M ∈ (Oyz) ⇔ x = 0; M ∈ (Oxz) ⇔ y = 0

• M ∈ Ox ⇔ y = z = 0; M ∈ Oy ⇔ x = z = 0; M ∈ Oz ⇔ x = y = 0 .

b) Tính chất: Cho A(xA; yA; zA), B(xB; yB; zB)

• AB→ = (xB – xA; yB – yA; zB – zA)

• Toạ độ trung điểm của đoạn thẳng AB:

• Toạ độ trọng tâm G của tam giác ABC:

• Toạ độ trọng tâm G của tứ diện ABCD:

4. Tích có hướng của hai vectơ

a) Định nghĩa: Trong không gian Oxyz cho hai vectơ a→ = (a1; a2; a3), b→ = (b1; b2; b3). Tích có hướng của hai vectơ a→ và b→ kí hiệu là [a→, b→], được xác định bởi

Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số.

b) Tính chất:

• [a→, b→] ⊥ a→; [a→, b→] ⊥ b→

• [a→, b→] = -[b→, a→]

• [i→, j→] = k→; [j→, k→] = i→; [k→, i→] = j→

• |[a→, b→]| = |a→|.|b→|.sin(a→, b→) (Chương trình nâng cao)

• a→, b→ cùng phương ⇔ [a→, b→] = 0→ (chứng minh 3 điểm thẳng hàng)

c) Ứng dụng của tích có hướng: (Chương trình nâng cao)

• Điều kiện đồng phẳng của ba vectơ: a→, b→ và c→ đồng phẳng ⇔ [a→, b→].c→ = 0

• Diện tích hình bình hành ABCD: SABCD = |[AB→], AD→|

• Diện tích tam giác ABC: SABC = 1/2 |[AB→], AC→|

• Thể tích khối hộp ABCDA’B’C’D’ : VABCD.A’B’C’D’ = |[AB→, AD→].AA’→|

• Thể tích tứ diện ABCD: VABCD = 1/6 |[AB→, AC→].AD→|

Chú ý:

– Tích vô hướng của hai vectơ thường sử dụng để chứng minh hai đường thẳng vuông góc, tính góc giữa hai đường thẳng.

– Tích có hướng của hai vectơ thường sử dụng để tính diện tích tam giác; tính thể tích khối tứ diện, thể tích hình hộp; chứng minh các vectơ đồng phẳng – không đồng phẳng, chứng minh các vectơ cùng phương.

5. Phương trình mặt cầu

a) Định nghĩa:

Cho điểm I cố định và một số thực dương R. Tập hợp tất cả những điểm M trong không gian cách I một khoảng R được gọi là mặt cầu tâm I, bán kính R.

Kí hiệu: S(I; R) ⇔ S(I; R) = {M|IM = R}

b) Vị trí tương đối giữa mặt cầu và mặt phẳng :

Lưu ý: Khi mặt phẳng (P) đi qua tâm I thì mặt phẳng (P) được gọi là mặt phẳng kính và thiết diện lúc đó được gọi là đường tròn lớn.

c) Vị trí tương đối giữa mặt cầu và đường thẳng :

* Lưu ý: Trong trường hợp Δ cắt (S) tại 2 điểm A, B thì bán kính R của (S) được tính như sau:

+ Xác định: d(I; Δ) = IH

+ Lúc đó:

** PHƯƠNG TRÌNH MẶT PHẲNG

I. Vectơ pháp tuyến của mặt phẳng

• Vectơ n→ ≠ 0→ là vectơ pháp tuyến (VTPT) nếu giá của n→ vuông góc với mặt phẳng (α)

• Chú ý:

– Nếu n→ là một VTPT của mặt phẳng (α) thì kn→ cũng là một VTPT của mặt phẳng (α).

– Một mặt phẳng được xác định duy nhất nếu biết một điểm nó đi qua và một VTPT của nó.

– Nếu u→, v→ có giá song song hoặc nằm trên mặt phẳng (α) thì n→ = [u→, v→] là một VTPT của (α)

II. Phương trình tổng quát của mặt phẳng

– Trong không gian Oxy , mọi mặt phẳng đều có dạng phương trình:

Ax + By + Cz + D = 0 với A2 + B2 + C2 ≠ 0

– Nếu mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 thì nó có một VTPT là n→(A; B; C).

– Phương trình mặt phẳng đi qua điểm Mo(xo; yo; zo) và nhận vectơ n→(A; B; C) khác 0→ là VTPT là: A(x – xo) + B(y – yo) + C(z – zo) = 0 .

• Các trường hợp riêng

Xét phương trình mặt phẳng (α): Ax + By + Cz + D = 0 với A2 + B2 + C2 ≠ 0

– Nếu D = 0 thì mặt phẳng (α) đi qua gốc tọa độ O.

– Nếu A = 0, B ≠ 0, C ≠ 0 thì mặt phẳng (α) song song hoặc chứa trục Ox.

– Nếu A ≠ 0, B = 0, C ≠ 0 thì mặt phẳng (α) song song hoặc chứa trục Oy.

– Nếu A ≠ 0, B ≠ 0, C = 0 thì mặt phẳng (α) song song hoặc chứa trục Oz.

– Nếu A = B = 0, C ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oxy).

– Nếu A = C = 0, B ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oxz).

– Nếu B = C = 0, A ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oyz).

Chú ý:

– Nếu trong phương trình (α) không chứa ẩn nào thì (α) song song hoặc chứa trục tương ứng.

– Phương trình mặt phẳng theo đoạn chắn (α): . Ở đây (α) cắt các trục tọa độ tại các điểm (a; 0; 0), (0; b; 0), (0; 0; c) với abc ≠ 0.

III. Khoảng cách từ một điểm đến một mặt phẳng.

• Trong không gian Oxyz, cho điểm Mo(xo; yo; zo) và mặt phẳng (α): Ax + By + Cz + D = 0

Khi đó khoảng cách từ điểm Mo đến mặt phẳng (α) được tính:

IV. Góc giữa hai mặt phẳng

Trong không gian Oxyz, cho hai mặt phẳng (α): A1x + B1y + C1z + D1 = 0 và (β): A2x + B2y + C2z + D2 = 0

Góc giữa (α) và (β) bằng hoặc bù với góc giữa hai VTPT nα→, nβ→. Tức là:

** PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN

I. Phương trình đường thẳng:

• Cho đường thẳng Δ đi qua điểm Mo(xo; yo; zo) và nhận vectơ a→ = (a1; a2; a3) với a12 + a22 + a32 ≠ 0 làm vectơ chỉ phương. Khi đó Δ có phương trình tham số là :

• Cho đường thẳng Δ đi qua điểm Mo(xo; yo; zo) và nhận vectơ a→ = (a1; a2; a3) sao cho a1a2a3 ≠ 0 làm vectơ chỉ phương. Khi đó Δ có phương trình chính tắc là :

II. Góc:

1. Góc giữa hai đường thẳng:

Δ1 có vectơ chỉ phương a1→

Δ2 có vectơ chỉ phương a2→

Gọi φ là góc giữa hai đường thẳng Δ1 và Δ2. Ta có:

2. Góc giữa đường thẳng và mặt phẳng:

Δ có vectơ chỉ phương aΔ→

(α) có vectơ chỉ phương nα→

Gọi φ là góc giữa hai đường thẳng Δ và α. Ta có:

III. Khoảng cách:

1. Khoảng cách từ điểm M đến đường thẳng Δ:

Δ đi qua điểm Mo và có vectơ chỉ phương aΔ→

2. Khoảng cách giữa hai đường thẳng chéo nhau:

Δ1 đi qua điểm M và có vectơ chỉ phươnga1→

Δ2 đi qua điểm N và có vectơ chỉ phương a2→

Lý thuyết và bài tập trắc nghiệm có đáp án và lời giải chi tiết Toán lớp 12 khác:

  • Lý thuyết Hệ tọa độ trong không gian
  • Lý thuyết Phương trình mặt phẳng
  • Lý thuyết Phương trình đường thẳng trong không gian
  • Lý thuyết tổng hợp chương Phương pháp tọa độ trong không gian
Previous Post

Lý thuyết độ dịch chuyển và quãng đường đi được – Vật Lí 10

Next Post

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Giải hệ phương trình lớp 9 hay, chi tiết

by Tranducdoan
30/12/2025
0
0

Cách giải hệ phương trình lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp học...

Cách tìm giới hạn hàm số dạng 0/0, dạng vô cùng trên vô cùng cực hay

by Tranducdoan
30/12/2025
0
0

Bài viết Cách tìm giới hạn hàm số dạng 0/0, dạng vô cùng trên vô cùng với phương pháp giải...

Chỉnh hợp là gì? Công thức & Bài tập về chỉnh hợp đầy đủ

by Tranducdoan
30/12/2025
0
0

Chỉnh hợp là gì và bài tập toán về hoán vị chỉnh hợp tổ hợp là một phần kiến thức...

10 Đề thi Giữa kì 1 Toán 6 Kết nối tri thức năm 2025 (có đáp án)

by Tranducdoan
30/12/2025
0
0

Với bộ 15 Đề thi Giữa kì 1 Toán 6 năm 2025 có đáp án theo cấu trúc mới được...

Load More
Next Post

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Ý nghĩa phàm phu tục tử là gì? Từ trái nghĩa với "phàm phu tục tử"

30/12/2025

Soạn bài Thiên nhiên và con người trong truyện Đất rừng phương Nam – Ngắn nhất Cánh diều

30/12/2025

Giải hệ phương trình lớp 9 hay, chi tiết

30/12/2025
Xoilac TV trực tiếp bóng đá Socolive trực tiếp
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.