Giải Toán 10 Kết nối tri thức Bài tập cuối chương II
Bài 2.15 trang 32 Toán 10 Tập 1: Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu: trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm. Vì lí do giảm thuế, bác An muốn số tiền đầu tư lãi suất chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng. Hơn nữa, để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp. Hỏi bác An nên đầu tư mỗi loại trái phiếu bao nhiêu tiền để lợi nhuận thu được sau một năm là lớn nhất?
Lời giải:
Gọi số tiền bác An đầu tư cho trái phiếu chính phủ, trái phiếu ngân hàng lần lượt là x, y (triệu đồng) (0 ≤ x, y ≤ 1 200).
Khi đó bác An đầu tư cho trái phiếu doanh nghiệp là 1 200 – x – y (triệu đồng)
Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng nên ta có: x ≥ 3y hay x – 3y ≥ 0.
Để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp nên ta có: 1 200 – x – y ≤ 200 hay x + y ≥ 1 000.
Từ đó ta có hệ bất phương trình: 0≤x≤12000≤y≤1200x−3y≥0x+y≥1000.
Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD với tọa độ các điểm
A(1 000;0), B(750;250), C(1 200;400), D(1 200;0).
Lợi nhuận bác An thu được là: F(x;y) = 7%x + 8%y + 12%(1200 – x – y) = 144 – 0,05x – 0,04y (triệu đồng)
Tính giá trị của F(x;y) tại các điểm A, B, C, D, ta được:
F(1 000;0) = 144 – 0,05.1 000 – 0,04.0 = 94;
F(750;250) = 144 – 0,05.750 – 0,04.250 = 96,5;
F(1 200;400) = 144 – 0,05.1 200 – 0,04.400 = 68;
F(1 200;0) = 144 – 0,05.1 200 – 0,04.0 = 84;
Suy ra hàm F(x;y) lớn nhất bằng 96,5 khi x = 750, y = 250.
Vậy bác An nên đầu tư 750 triệu vào trái phiếu chính phủ, 250 triệu vào trái phiếu ngân hàng và 1 200 – 750 – 250 = 200 triệu vào trái phiếu doanh nghiệp để lợi nhuận thu được là lớn nhất.
Lời giải bài tập Toán 10 Bài tập cuối chương 2 hay, chi tiết khác:
-
Bài 2.7 trang 31 Toán 10 Tập 1: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn? ….
-
Bài 2.8 trang 31 Toán 10 Tập 1: Cho bất phương trình 2x + y > 3. Khẳng định nào dưới đây là đúng? ….
-
Bài 2.9 trang 31 Toán 10 Tập 1: Hình nào dưới đây biểu diễn miền nghiệm của bất phương trình x – y < 3? ….
-
Bài 2.10 trang 31 Toán 10 Tập 1: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn? ….
-
Bài 2.11 trang 32 Toán 10 Tập 1: Cho hệ bất phương trình x−y<−32y≥−4. Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho? ….
-
Bài 2.12 trang 32 Toán 10 Tập 1: Biểu diễn miền nghiệm của bất phương trình x+y2≥2x−y+13 trên mặt phẳng tọa độ. ….
-
Bài 2.13 trang 32 Toán 10 Tập 1: Biểu diễn miền nghiệm của hệ bất phương trình: x+y<12x−y≥3….
-
Bài 2.14 trang 32 Toán 10 Tập 1: Biểu diễn miền nghiệm của hệ bất phương trình y−2x≤2y≤4x≤5x+y≥−1 trên mặt phẳng tọa độ. ….
-
Bài 2.16 trang 32 Toán 10 Tập 1: Một công ty dự định chi tối đa 160 triệu đồng cho quảng cáo một sản phẩm ….
Các bài học để học tốt Toán 10 Bài tập cuối chương 2:
-
Giải SBT Toán 10 Bài tập cuối chương 2
Xem lời giải
-
Tổng hợp lý thuyết Toán 10 Chương 2
Xem chi tiết
-
Bài tập trắc nghiệm tổng hợp Toán 10 Chương 2
Xem chi tiết
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
-
Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn
-
Toán 10 Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°
-
Toán 10 Bài 6: Hệ thức lượng trong tam giác
-
Toán 10 Bài tập cuối chương 3
-
Toán 10 Bài 7: Các khái niệm mở đầu
-
Toán 10 Bài 8: Tổng và hiệu của hai vectơ
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)