Đề bài
Câu 1 :
Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:
-
A.
\(2,5\)
-
B.
\(5,2\)
-
C.
\(0,4\)
-
D.
\(0,04\)
Câu 2 :
Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:
-
A.
\(1,2\)
-
B.
\(1,4\)
-
C.
\(1,5\)
-
D.
\(1,8\)
Câu 3 :
Số thập phân \(3,015\) được chuyển thành phân số là:
-
A.
\(\dfrac{{3015}}{{10}}\)
-
B.
\(\dfrac{{3015}}{{100}}\)
-
C.
\(\dfrac{{3015}}{{1000}}\)
-
D.
\(\dfrac{{3015}}{{10000}}\)
Câu 4 :
Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:
-
A.
$35$
-
B.
$36$
-
C.
$37$
-
D.
$34$
Câu 5 :
Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).
-
A.
\(x = 4\)
-
B.
\(x = - 4\)
-
C.
\(x = 5\)
-
D.
\(x = - 0,2\)
Câu 6 :
Một người gửi tiết kiệm \(15.000.000\) đồng với lãi suất \(0,6\% \) một tháng thì sau một tháng người đó thu được tất cả bao nhiêu tiền?
-
A.
\(15.090.000\) đồng
-
B.
\(15.080.000\) đồng
-
C.
\(15.085.000\) đồng
-
D.
\(15.100.000\) đồng.
Câu 7 :
Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?
-
A.
\(30\) quả
-
B.
\(48\) quả
-
C.
\(18\) quả
-
D.
\(36\) quả
Câu 8 :
Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.
-
A.
\(50\% \)
-
B.
\(125\% \)
-
C.
\(75\% \)
-
D.
\(70\% \)
Câu 9 :
Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.
-
A.
\(12\)
-
B.
\(20\)
-
C.
$18$
-
D.
\(25\)
Câu 10 :
Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?
-
A.
\(\dfrac{1}{3}\)
-
B.
\(\dfrac{1}{4}\)
-
C.
$\dfrac{2}{3}$
-
D.
\(\dfrac{1}{2}\)
Câu 11 :
Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?
-
A.
\(39\) km/h
-
B.
\(40\) km/h
-
C.
$42$ km/h
-
D.
\(44\) km/h
Câu 12 :
Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.
-
A.
\(A < - B\)
-
B.
\(2A > B\)
-
C.
\(A > B\)
-
D.
\(A = B\)
Câu 13 :
Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)
-
A.
\(x = - 40\)
-
B.
\(x = 40\)
-
C.
\(x = - 160\)
-
D.
\(x = 160\)
Lời giải và đáp án
Câu 1 :
Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:
-
A.
\(2,5\)
-
B.
\(5,2\)
-
C.
\(0,4\)
-
D.
\(0,04\)
Đáp án : C
Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân.
\(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)
Câu 2 :
Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:
-
A.
\(1,2\)
-
B.
\(1,4\)
-
C.
\(1,5\)
-
D.
\(1,8\)
Đáp án : B
Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân.
\(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)
Câu 3 :
Số thập phân \(3,015\) được chuyển thành phân số là:
-
A.
\(\dfrac{{3015}}{{10}}\)
-
B.
\(\dfrac{{3015}}{{100}}\)
-
C.
\(\dfrac{{3015}}{{1000}}\)
-
D.
\(\dfrac{{3015}}{{10000}}\)
Đáp án : C
Áp dụng qui tắc chuyển từ số thập phân về phân số.
\(3,015 = \dfrac{{3015}}{{1000}}\)
Câu 4 :
Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:
-
A.
$35$
-
B.
$36$
-
C.
$37$
-
D.
$34$
Đáp án : B
Áp dụng qui tắc so sánh số thập phân để tìm được $x$
Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).
Câu 5 :
Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).
-
A.
\(x = 4\)
-
B.
\(x = - 4\)
-
C.
\(x = 5\)
-
D.
\(x = - 0,2\)
Đáp án : D
Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\).
\(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)
Câu 6 :
Một người gửi tiết kiệm \(15.000.000\) đồng với lãi suất \(0,6\% \) một tháng thì sau một tháng người đó thu được tất cả bao nhiêu tiền?
-
A.
\(15.090.000\) đồng
-
B.
\(15.080.000\) đồng
-
C.
\(15.085.000\) đồng
-
D.
\(15.100.000\) đồng.
Đáp án : A
Áp dụng công thức: tiền lãi = tiền gốc :\(100 \times \) lãi suất
Tiền 1 tháng thu được = tiền gốc + tiền lãi.
Tiền lãi thu được sau 1 tháng là: \(15.000.000:100\, \times 0,6 = 90.000\) đồng.
Tổng số tiền thu được sau 1 tháng là: \(15.000.000 + 90.000 = 15.090.000\) đồng.
Câu 7 :
Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?
-
A.
\(30\) quả
-
B.
\(48\) quả
-
C.
\(18\) quả
-
D.
\(36\) quả
Đáp án : A
Sử dụng cách tính giá trị phân số của một số cho trước
Muốn tìm \(\dfrac{m}{n}\) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}\) \(\left( {m,n \in \mathbb{N},n \ne 0} \right)\)
Hoa ăn số táo là \(25\% .64 = 16\) quả.
Số táo còn lại là \(64 - 16 = 48\) quả
Hùng ăn số táo là \(\dfrac{3}{8}.48 = 18\) quả.
Số táo còn lại sau khi Hùng ăn là \(48 - 18 = 30\) quả.
Câu 8 :
Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.
-
A.
\(50\% \)
-
B.
\(125\% \)
-
C.
\(75\% \)
-
D.
\(70\% \)
Đáp án : C
+ Tính số học sinh giỏi, học sinh trung bình và học sinh khá
+ Tính tỉ số phần trăm: Muốn tìm tỉ số phần trăm của hai số \(a\) và \(b\) , ta nhân \(a\) với \(100\) rồi chia cho \(b\) và viết kí hiệu % vào kết quả: \(\dfrac{{a.100}}{b}\% \)
Số học sinh giỏi của lớp là \(18,75\% .48 = 9\) học sinh
Số học sinh trung bình là \(9.300\% = 27\) học sinh
Số học sinh khá là \(48 - 9 - 27 = 12\) học sinh
Tỉ số phần trăm số học sinh khá và số học sinh giỏi là: \(\dfrac{9}{{12}}.100\% = 75\% .\)
Câu 9 :
Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.
-
A.
\(12\)
-
B.
\(20\)
-
C.
$18$
-
D.
\(25\)
Đáp án : B
Sử dụng cách giá trị phân số của một số cho trước và cách tìm một số biết giá trị phân số của nó để tính toán theo các bước:
+ Tính số công nhân của cả nhà máy
+ Tính số công nhân của cả hai phân xưởng 2 và 3
+ Tính số công nhân của phân xưởng 2
+ Tính số công nhân của phân xưởng 3
Số công nhân của cả nhà máy là \(18:36\% = 50\) công nhân
Số công nhân của phân xưởng 2 và phân xưởng 3 là \(50 - 18 = 32\) công nhân
Vì số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3 nên số công nhân của phân xưởng 2 bằng \(\dfrac{3}{{3 + 5}} = \dfrac{3}{8}\) số công nhân của cả hai phân xưởng.
Số công nhân của phân xưởng 2 là \(32.\dfrac{3}{8} = 12\) công nhân
Số công nhân của phân xưởng ba là \(32 - 12 = 20\) công nhân
Câu 10 :
Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?
-
A.
\(\dfrac{1}{3}\)
-
B.
\(\dfrac{1}{4}\)
-
C.
$\dfrac{2}{3}$
-
D.
\(\dfrac{1}{2}\)
Đáp án : B
Tìm số phần bể vòi nước chảy được trong 1 giờ, rồi lấy kết quả đó nhân với thời gian mở vòi nước.
Đổi: \(45\)phút = \(\dfrac{3}{4}\) giờ
Mỗi giờ vòi nước chảy được số phần bể là: \(1:3 = \dfrac{1}{3}\) (bể)
Nếu mở vòi trong 45 phút thì được số phần bể là: \(\dfrac{3}{4}.\dfrac{1}{3} = \dfrac{1}{4}\)(bể)
Câu 11 :
Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?
-
A.
\(39\) km/h
-
B.
\(40\) km/h
-
C.
$42$ km/h
-
D.
\(44\) km/h
Đáp án : A
Áp dụng công thức: vận tốc = quãng đường : thời gian.
Thời gian người đó đi hết quãng đường AB là: 8 giờ 45 phút – 7 giờ 5 phút = 1 giờ 40 phút
Đổi 1 giờ 40 phút = \(\dfrac{5}{3}\) giờ.
Vận tốc của người đi xe máy đó là: \(65:\dfrac{5}{3} = 39\left( {km/h} \right)\)
Câu 12 :
Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.
-
A.
\(A < - B\)
-
B.
\(2A > B\)
-
C.
\(A > B\)
-
D.
\(A = B\)
Đáp án : D
Chuyển hỗn số về dạng phân số rồi rút gọn từng biểu thức A; B để so sánh.
Ta có \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\)\( = \dfrac{{\left( {\dfrac{{47}}{{15}} + \dfrac{3}{{15}}} \right):\dfrac{5}{2}}}{{\left( {\dfrac{{38}}{7} - \dfrac{9}{4}} \right):\dfrac{{267}}{{56}}}} = \dfrac{{\dfrac{{50}}{{15}}.\dfrac{2}{5}}}{{\left( {\dfrac{{152}}{{28}} - \dfrac{{63}}{{28}}} \right).\dfrac{{56}}{{267}}}}\)\( = \dfrac{{\dfrac{4}{3}}}{{\dfrac{{89}}{{28}}.\dfrac{{56}}{{267}}}} = \dfrac{{\dfrac{4}{3}}}{{\dfrac{2}{3}}} = 2\)
Và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\)\( = \dfrac{{\dfrac{6}{5}:\left( {\dfrac{6}{5}.\dfrac{5}{4}} \right)}}{{\dfrac{8}{{25}} + \dfrac{2}{{25}}}} = \dfrac{{\dfrac{6}{5}:\dfrac{3}{2}}}{{\dfrac{{10}}{{25}}}} = \dfrac{{\dfrac{4}{5}}}{{\dfrac{2}{5}}} = 2\)
Vậy \(A = B.\)
Câu 13 :
Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)
-
A.
\(x = - 40\)
-
B.
\(x = 40\)
-
C.
\(x = - 160\)
-
D.
\(x = 160\)
Đáp án : D
Rút gọn biểu thức trong ngoặc
Sử dụng qui tắc chuyển vế đổi dấu để tìm x
Ta có \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)
\(\dfrac{1}{4}.x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313:10101}}{{151515:10101}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313:10101}}{{636363:10101}} + \dfrac{{131313:10101}}{{999999:10101}}} \right) = - 5\)
\(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{{15}} + \dfrac{{13}}{{35}} + \dfrac{{13}}{{63}} + \dfrac{{13}}{{99}}} \right) = - 5\)
\(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {13.\left( {\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} + \dfrac{1}{{9.11}}} \right)} \right] = - 5\)
\(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{11}}} \right)} \right] = - 5\)
\(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{{11}}} \right)} \right] = - 5\)
\(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{2}.\dfrac{8}{{33}}} \right) = - 5\)
\(\begin{array}{l}25\% .x - \dfrac{{780}}{{11}}:\dfrac{{52}}{{33}} = - 5\\25\% .x - \dfrac{{780}}{{11}}.\dfrac{{33}}{{52}} = - 5\\25\% .x - 45 = - 5\\25\% .x = - 5 + 45\\25\% .x = 40\\x = 40:\dfrac{{25}}{{100}}\\x = 160\end{array}\)
Luyện tập và củng cố kiến thức Các dạng toán về tỉ số và tỉ số phần trăm Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 31: Một số bài toán về tỉ số và tỉ số phần trăm Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 30: Làm tròn và ước lượng Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 29: Tính toán với số thập phân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 28: Số thập phân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết