Đề bài
Câu 1 :
Phát biểu nào sau đây là đúng?
-
A.
Số nguyên không phải số thực
-
B.
Phân số không phải số thực
-
C.
Số vô tỉ không phải số thực
-
D.
Cả ba loại số trên đều là số thực.
Câu 2 :
Chọn chữ số thích hợp điền vào chỗ trống $ - 5,07 < - 5,...4$
-
A.
$1;2;...9$
-
B.
$0;1;2;...9$
-
C.
$0$
-
D.
$0;1$
Câu 3 :
Sắp xếp các số sau theo thứ tự tăng dần: \( - \dfrac{1}{2};0,5; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4};\dfrac{4}{5}\)
-
A.
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};\dfrac{4}{5};0,5\)
-
B.
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
-
C.
\( - \dfrac{3}{4}; - \dfrac{1}{2}; - \sqrt 2 - \dfrac{3}{4};0,5;\dfrac{4}{5}\)
-
D.
\( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
Câu 4 :
Nếu ${x^2} = 7$ thì $x$ bằng:
-
A.
$49$ hoặc $ - 49$
-
B.
\(\sqrt 7 \) hoặc \( - \sqrt 7 \)
-
C.
\(\dfrac{7}{2}\)
-
D.
\( \pm 14\)
Câu 5 :
Kết quả của phép tính \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\) là:
-
A.
\(\dfrac{{87}}{5}\)
-
B.
\(\dfrac{{ - 87}}{5}\)
-
C.
\(\dfrac{{ - 5}}{{87}}\)
-
D.
\(\dfrac{5}{{87}}\)
Câu 6 :
Cho \(A = \) \(\left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right] .\sqrt {1\dfrac{9}{{16}}}\) và $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right].$ So sánh \(A\) và \(B\).
-
A.
\(A > B\)
-
B.
\(A < B\)
-
C.
\(A = B\)
-
D.
\(A \ge B\)
Câu 7 :
Giá trị nào sau đây là kết quả của phép tính \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
-
A.
\(\dfrac{{87}}{5}\)
-
B.
\(-35\)
-
C.
\(35\)
-
D.
\(\dfrac{5}{{87}}\)
Câu 8 :
Tìm \(x\) biết \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
-
A.
\(\dfrac{1}{7}\)
-
B.
\(\dfrac{{ - 3}}{{35}}\)
-
C.
\(\dfrac{{ - 1}}{{35}}\)
-
D.
\(\dfrac{1}{{35}}\)
Câu 9 :
Gọi \(x\) là giá trị thỏa mãn \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\). Chọn câu đúng.
-
A.
\(x > 2\)
-
B.
\(x < 0\)
-
C.
\(0 < x < 1\)
-
D.
\(x > 3\)
Câu 10 :
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(3\)
-
D.
\(0\)
Câu 11 :
Giá trị nào dưới đây của \(x\) thỏa mãn \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7.\)
-
A.
\(x = 49842\)
-
B.
\(x = 498\)
-
C.
\(x = 498420\)
-
D.
\(x = 498425\)
Câu 12 :
Tìm số tự nhiên $x$ để \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}}\) có giá trị là một số nguyên.
-
A.
\(x = 4\)
-
B.
\(x = 16\)
-
C.
\(x = 9\)
-
D.
\(x = 10\)
Câu 13 :
Tập hợp các số thực được kí hiệu là:
-
A.
\(\mathbb{Z}\)
-
B.
\(\mathbb{F}\)
-
C.
\(\mathbb{Q}\)
-
D.
\(\mathbb{R}\)
Câu 14 :
So sánh: \(\sqrt {17} \) và 4,(12)
-
A.
\(\sqrt {17} \) > 4,(12)
-
B.
\(\sqrt {17} \) = 4,(12)
-
C.
\(\sqrt {17} \) \( \le \)4,(12)
-
D.
\(\sqrt {17} \) < 4,(12)
Câu 15 :
So sánh \(\sqrt {{{( - 4)}^2}} \) và \(\sqrt {17} \)
-
A.
\(\sqrt {{{( - 4)}^2}} \) > \(\sqrt {17} \)
-
B.
\(\sqrt {{{( - 4)}^2}} \) = \(\sqrt {17} \)
-
C.
\(\sqrt {{{( - 4)}^2}} \) \(\sqrt {17} \)
-
D.
Không so sánh được
Câu 16 :
Chọn chữ số thích hợp điền vào dấu “…”
-2,3….4 > - 2, (31)
-
A.
0
-
B.
1
-
C.
{1;2;3;4;5;6;7;8;9}
-
D.
2
Câu 17 :
Phát biểu nào sau đây sai?
-
A.
Mọi số vô tỉ đều là số thực
-
B.
Mọi số thực đều là số vô tỉ.
-
C.
Mọi số nguyên đều là số hữu tỉ
-
D.
Số 0 là số hữu tỉ cũng là số thực.
Lời giải và đáp án
Câu 1 :
Phát biểu nào sau đây là đúng?
-
A.
Số nguyên không phải số thực
-
B.
Phân số không phải số thực
-
C.
Số vô tỉ không phải số thực
-
D.
Cả ba loại số trên đều là số thực.
Đáp án : D
Ta dựa vào định nghĩa số thực: số thực bao gồm số hữu tỉ và số vô tỉ
Ta thấy số nguyên, phân số hay số vô tỉ đều là số thực
Câu 2 :
Chọn chữ số thích hợp điền vào chỗ trống $ - 5,07 < - 5,...4$
-
A.
$1;2;...9$
-
B.
$0;1;2;...9$
-
C.
$0$
-
D.
$0;1$
Đáp án : C
Sử dụng cách so sánh hai số nguyên âm để tìm đáp án phù hợp
Áp dụng so sánh hai số nguyên âm ta thấy chỉ có $ - 5,07 < - 5,04$ . Do đó ô trống cần điền là số $0$
Câu 3 :
Sắp xếp các số sau theo thứ tự tăng dần: \( - \dfrac{1}{2};0,5; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4};\dfrac{4}{5}\)
-
A.
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};\dfrac{4}{5};0,5\)
-
B.
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
-
C.
\( - \dfrac{3}{4}; - \dfrac{1}{2}; - \sqrt 2 - \dfrac{3}{4};0,5;\dfrac{4}{5}\)
-
D.
\( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
Đáp án : D
Áp dụng các quy tắc so sánh: số âm với số âm, số dương với số dương, số âm với số dương.
Ta chia các số đã cho thành hai nhóm: \( - \dfrac{1}{2}; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}\) và \(0,5;\dfrac{4}{5}\).
Nhóm 1: Vì \(\dfrac{3}{4} - \left( {\sqrt 2 + \dfrac{3}{4}} \right) = - \sqrt 2 - \dfrac{3}{4}\).
Lại có \(\dfrac{1}{2} = \dfrac{2}{4} - \dfrac{3}{4}\) suy ra \( - \sqrt 2 - \dfrac{3}{4}
Nhóm 2: \(0,5 = \dfrac{1}{2} = \dfrac{5}{{10}}
Vậy ta có dãy số tăng dần là \( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\).
Câu 4 :
Nếu ${x^2} = 7$ thì $x$ bằng:
-
A.
$49$ hoặc $ - 49$
-
B.
\(\sqrt 7 \) hoặc \( - \sqrt 7 \)
-
C.
\(\dfrac{7}{2}\)
-
D.
\( \pm 14\)
Đáp án : B
Ta áp dụng tính chất với \(a \ge 0\), đẳng thức \({x^2} = a \Leftrightarrow x = \sqrt a \) hoặc \(x = - \sqrt a \)
Ta có \({x^2} = 7 \Leftrightarrow {x^2} = {\left( { \pm \sqrt 7 } \right)^2}\).
Suy ra \(x = \sqrt 7 \) hoặc \(x = - \sqrt 7 \)
Câu 5 :
Kết quả của phép tính \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\) là:
-
A.
\(\dfrac{{87}}{5}\)
-
B.
\(\dfrac{{ - 87}}{5}\)
-
C.
\(\dfrac{{ - 5}}{{87}}\)
-
D.
\(\dfrac{5}{{87}}\)
Đáp án : B
+ Ta thực hiện phép tính dưới dấu căn trước.
+ Sau đó ta thực hiện phép tính theo thứ tự trong ngoặc trước ngoài ngoặc sau, nhân chia trước cộng trừ sau.
\(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\)
\( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)\)
\( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right) \)
\(= \left( {\dfrac{3}{5} - \dfrac{{90}}{5}} \right):\dfrac{5}{5} \)
\(= \dfrac{{ - 87}}{5}:1 = \dfrac{{ - 87}}{5}\)
Câu 6 :
Cho \(A = \) \(\left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right] .\sqrt {1\dfrac{9}{{16}}}\) và $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right].$ So sánh \(A\) và \(B\).
-
A.
\(A > B\)
-
B.
\(A < B\)
-
C.
\(A = B\)
-
D.
\(A \ge B\)
Đáp án : B
+) Ta tính giá trị của biểu thức dưới dấu căn
+) Sau đó thực hiện phép tính theo thứ tự thực hiện: nhân chia trước, cộng trừ sau; trong ngoặc trước và ngoài ngoặc sau.
Ta có
\(A = \left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right].\sqrt {1\dfrac{9}{{16}}} \)
\(A = \left[ { - 1,5 + 4.2,15 - 9.\dfrac{7}{6}} \right].\sqrt {\dfrac{{25}}{{16}}} \)
\(A = \left[ { - 1,5 + 8,6 - \dfrac{{21}}{2}} \right].\dfrac{5}{4}\)
\(A = \left[ {7,1 - 10,5} \right].1,25\)
\(A = - 3,4.1,25\)
\(A = - 4,25\)
Và
$B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right]$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}\left( {\dfrac{5}{2} - \dfrac{7}{4}} \right)} \right]:\left[ {\dfrac{4}{9} + \dfrac{1}{9}} \right]$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}.\dfrac{3}{4}} \right]:\dfrac{5}{9}$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{9}{{10}}} \right]:\dfrac{5}{9}$
$B = \dfrac{{42}}{{25}} + \dfrac{{ - 1}}{{10}}:\dfrac{5}{9} = \dfrac{{42}}{{25}} + \dfrac{{ - 9}}{{50}}$
$B = \dfrac{{84}}{{50}} + \dfrac{{ - 9}}{{50}} = \dfrac{{75}}{{50}} = \dfrac{3}{2}$
Từ đó \(A
Câu 7 :
Giá trị nào sau đây là kết quả của phép tính \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
-
A.
\(\dfrac{{87}}{5}\)
-
B.
\(-35\)
-
C.
\(35\)
-
D.
\(\dfrac{5}{{87}}\)
Đáp án : B
Phá ngoặc rồi cộng trừ các số hạng thích hợp
\(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
$=(-45,7)+(5,7+5,75-0,75)$$=-45,7+5,7+5$$=-40+5$$=-35$
Câu 8 :
Tìm \(x\) biết \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
-
A.
\(\dfrac{1}{7}\)
-
B.
\(\dfrac{{ - 3}}{{35}}\)
-
C.
\(\dfrac{{ - 1}}{{35}}\)
-
D.
\(\dfrac{1}{{35}}\)
Đáp án : D
Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.
\(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
\(\begin{array}{l}\dfrac{5}{3}x = \dfrac{5}{7} - \dfrac{2}{3}\\\dfrac{5}{3}x = \dfrac{1}{{21}}\\x = \dfrac{1}{{21}}:\dfrac{5}{3}\\x = \dfrac{1}{{35}}\end{array}\)
Vậy \(x = \dfrac{1}{{35}}.\)
Câu 9 :
Gọi \(x\) là giá trị thỏa mãn \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\). Chọn câu đúng.
-
A.
\(x > 2\)
-
B.
\(x < 0\)
-
C.
\(0 < x < 1\)
-
D.
\(x > 3\)
Đáp án : C
Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.
Sử dụng \(\sqrt x = a\,\left( {a \ge 0;x \ge 0} \right)\) thì \(x = {a^2}\) .
Ta có
\(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\)
\(1,3.\left( {2\sqrt x + \dfrac{9}{{11}}} \right) = 1,3\)
\(2\sqrt x + \dfrac{9}{{11}} = 1,3:1,3\)
\(2\sqrt x + \dfrac{9}{{11}} = 1\)
\(2\sqrt x = 1 - \dfrac{9}{{11}}\)
\(2\sqrt x = \dfrac{2}{{11}}\)
\(\sqrt x = \dfrac{2}{{11}}:2\)
\(\sqrt x = \dfrac{1}{{11}}\)
\(x = \dfrac{1}{{121}}\)
Vậy \(x = \dfrac{1}{{121}}\) nên \(0 < x < 1\).
Câu 10 :
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(3\)
-
D.
\(0\)
Đáp án : A
Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.
Đối với bài toán tìm $x$ có chứa dấu giá trị tuyệt đối ta áp dụng quy tắc phá dấu giá trị tuyệt đối: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,x \ge 0\\ - x\,\,\,\,khi\,\,\,x < 0\end{array} \right.\) sau đó tìm $x$.
Ta có \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{1}{5} + \dfrac{3}{4}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{{19}}{{20}}\)
Trường hợp 1: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{19}}{{20}} + \dfrac{1}{{20}} = 1$
$\sqrt x = 1:\dfrac{3}{5} = \dfrac{5}{3}$
$x = \dfrac{{25}}{9}$
Trường hợp 2: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{ - 19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{ - 19}}{{20}} + \dfrac{1}{{20}}$
$\dfrac{3}{5} \sqrt x = - \dfrac{9}{{10}}$
$\sqrt x = \dfrac{{ - 9}}{{10}}:\dfrac{3}{5}$
\(\sqrt x = - \dfrac{3}{2} < 0\) (vô lý)
Vậy có một giá trị của \(x\) thỏa mãn là \(x = \dfrac{{25}}{9}\)
Một số em không để ý đến điều kiện \(\sqrt x \ge 0\) nên vẫn ra kết qua cho trường hợp 2 dẫn đến sai đáp án.
Câu 11 :
Giá trị nào dưới đây của \(x\) thỏa mãn \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7.\)
-
A.
\(x = 49842\)
-
B.
\(x = 498\)
-
C.
\(x = 498420\)
-
D.
\(x = 498425\)
Đáp án : D
+ Sử dụng qui tắc chuyển vế và mối quan hệ giữa các số hạng, mối quan hệ giữa số bị chia, số chia và thương để tìm \(x\).
Ta có
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7\)
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 77,7 + 12,3\)
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 90\)
\(\left( {7 + 0,004x} \right):0,9 = 90.24,7\)
\(\left( {7 + 0,004x} \right):0,9 = 2223\)
\(7 + 0,004x = 2223.0,9\)
\(7 + 0,004x = 2000,7\)
\(0,004x = 1993,7\)
\(x = 498425\)
Vậy \(x = 498425\).
Câu 12 :
Tìm số tự nhiên $x$ để \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}}\) có giá trị là một số nguyên.
-
A.
\(x = 4\)
-
B.
\(x = 16\)
-
C.
\(x = 9\)
-
D.
\(x = 10\)
Đáp án : C
- Đầu tiên ta tách biểu thức đã cho về dạng một số nguyên cộng với một phân thức có tử là một số nguyên.
- Để $D $ là một số nguyên thì phân thức được tách phải là số nguyên hay tử phải chia hết cho mẫu, hay mẫu là ước của tử.
- Từ đó tìm ra $x$.
Ta có: \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}} \) \(= \dfrac{{\sqrt x + 2 - 5}}{{\sqrt x + 2}} \) \(= 1 - \dfrac{5}{{\sqrt x + 2}}\)
Để \(D \in Z\) thì \(\left( {\sqrt x + 2} \right)\) phải thuộc $Z$ và là ước của $5.$
Vì \(\left( {\sqrt x + 2} \right) > 0\) nên chỉ có hai trường hợp:
Trường hợp 1: \(\sqrt x + 2 = 1\) suy ra \(\sqrt x = - 1\) (vô lý)
Trường hợp 2: \(\sqrt x + 2 = 5 \) suy ra \(\sqrt x = 3 \) do đó \(x = 9\)(thỏa mãn).
Vậy để \(D \in Z\) thì $x = 9$ (khi đó $D = 0$).
Câu 13 :
Tập hợp các số thực được kí hiệu là:
-
A.
\(\mathbb{Z}\)
-
B.
\(\mathbb{F}\)
-
C.
\(\mathbb{Q}\)
-
D.
\(\mathbb{R}\)
Đáp án : D
Kí hiệu tập hợp các số thực
Tập hợp các số thực được kí hiệu là \(\mathbb{R}\)
Câu 14 :
So sánh: \(\sqrt {17} \) và 4,(12)
-
A.
\(\sqrt {17} \) > 4,(12)
-
B.
\(\sqrt {17} \) = 4,(12)
-
C.
\(\sqrt {17} \) \( \le \)4,(12)
-
D.
\(\sqrt {17} \) < 4,(12)
Đáp án : A
Đưa các số thực về dạng số thập phân rồi so sánh 2 số thập phân.
Ta có: \(\sqrt {17} \) = 4,1231056…..
4,(12) = 4,1212…..
Đi từ trái sang phải của 2 số thập phân, ta thấy các chữ số ở cùng hàng tương ứng bằng nhau, cho đến chữ số thập phân thức 3 thì 3 > 1 nên 4,1231056….. > 4,1212…..
Vậy \(\sqrt {17} \) > 4,(12)
Câu 15 :
So sánh \(\sqrt {{{( - 4)}^2}} \) và \(\sqrt {17} \)
-
A.
\(\sqrt {{{( - 4)}^2}} \) > \(\sqrt {17} \)
-
B.
\(\sqrt {{{( - 4)}^2}} \) = \(\sqrt {17} \)
-
C.
\(\sqrt {{{( - 4)}^2}} \) \(\sqrt {17} \)
-
D.
Không so sánh được
Đáp án : C
So sánh 2 căn thức: Nếu \(0 < a < b \Rightarrow \sqrt a < \sqrt b \)
Ta có: \(\sqrt {{{( - 4)}^2}} = \sqrt {16} \)
Vì 16
Vậy \(\sqrt {{{( - 4)}^2}}
Câu 16 :
Chọn chữ số thích hợp điền vào dấu “…”
-2,3….4 > - 2, (31)
-
A.
0
-
B.
1
-
C.
{1;2;3;4;5;6;7;8;9}
-
D.
2
Đáp án : A
Dựa vào cách so sánh 2 số thập phân
Chú ý: Nếu a > b thì –a < - b
-2,3….4 > - 2, (31)
2,3…4 < 2,(31) = 2,3131
Ta thấy, chỉ có chữ số 0 thỏa mãn do 2,304 < 2,3131
Câu 17 :
Phát biểu nào sau đây sai?
-
A.
Mọi số vô tỉ đều là số thực
-
B.
Mọi số thực đều là số vô tỉ.
-
C.
Mọi số nguyên đều là số hữu tỉ
-
D.
Số 0 là số hữu tỉ cũng là số thực.
Đáp án : B
Số thực gồm số hữu tỉ và số vô tỉ
Mọi số nguyên đều là số hữu tỉ. Mọi số hữu tỉ đều là số thực.
Số thực gồm số hữu tỉ và số vô tỉ nên B sai
Luyện tập và củng cố kiến thức Bài 3: Giá trị tuyệt đối của một số thực Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 4: Làm tròn và ước lượng Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 5: Tỉ lệ thức Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 6: Dãy tỉ số bằng nhau Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 7: Đại lượng tỉ lệ thuận Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 8: Đại lượng tỉ lệ nghịch Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 1: Số vô tỉ. Căn bậc hai số học Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết