Đề bài
Câu 1 :
Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:
-
A.
Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
-
B.
Nếu \(A = 0\) thì \(x = y = z = 0\).
-
C.
Chỉ có 1 giá trị của \(x\) để \(A = 0\).
-
D.
Chỉ có 1 giá trị của \(y\) để \(A = 0\).
Câu 2 :
Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).
-
A.
a = 9.
-
B.
a = 1.
-
C.
a = 3.
-
D.
a = 2.
Câu 3 :
Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
-
A.
\(59{x^5}{y^4}\).
-
B.
\(49{x^5}{y^4}\).
-
C.
\(65{x^5}{y^4}\).
-
D.
\(17{x^5}{y^4}\).
Câu 4 :
Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).
-
A.
\(10\).
-
B.
\(20\).
-
C.
\( - 40\).
-
D.
\(40\).
Câu 5 :
Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\) là hằng số) là:
-
A.
\(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
-
B.
\({a^5}{x^3}{y^3}\).
-
C.
\(\frac{{27}}{8}{a^5}\).
-
D.
\({x^3}{y^3}\).
Câu 6 :
Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:
-
A.
\( - 1500\).
-
B.
\( - 750\).
-
C.
30
-
D.
1500
Câu 7 :
Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:
-
A.
\(\frac{{7}}{{2}}{x^4}{y^3}\).
-
B.
\(\frac{1}{2}{x^3}{y^3}\).
-
C.
\(-\frac{{7}}{{2}}{x^4}{y^3}\).
-
D.
\( - \frac{1}{2}{x^2}{y^2}\).
Câu 8 :
Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là
-
A.
\( - 21{y^2}z\).
-
B.
\( - 3{y^2}z\).
-
C.
\(3{y^4}{z^2}\).
-
D.
\(3{y^2}z\).
Câu 9 :
Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là
-
A.
\(10{x^2}{y^4}\).
-
B.
\(9{x^2}{y^4}\).
-
C.
\( - 9{x^2}{y^4}\).
-
D.
\( - 4{x^2}{y^4}\).
Câu 10 :
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:
-
A.
0; 1; 3; 4.
-
B.
0; 3; 1; 4.
-
C.
0; 1; 2; 3.
-
D.
0; 1; 3; 2.
Câu 11 :
Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.
-
A.
\(a{b^2}{x^2}yz\).
-
B.
\({x^2}y\).
-
C.
\({x^2}yz\).
-
D.
\(100ab\).
Câu 12 :
Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.
-
A.
\( - 36\).
-
B.
\( - 36{a^2}{b^2}\).
-
C.
\(36{a^2}{b^2}\).
-
D.
\( - 36{a^2}\).
Câu 13 :
Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:
-
A.
\( - 6{x^3}{y^3}\).
-
B.
\(6{x^3}{y^3}\).
-
C.
\(6{x^3}{y^2}\).
-
D.
\( - 6{x^2}{y^3}\).
Câu 14 :
Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).
-
A.
\(2\).
-
B.
\(3\).
-
C.
\(4\).
-
D.
\(5\).
Câu 15 :
Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?
-
A.
2.
-
B.
\(5x + 9\).
-
C.
\({x^3}{y^2}\).
-
D.
\(3x\).
Câu 16 :
Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)
-
A.
6
-
B.
8
-
C.
12
-
D.
0
Câu 17 :
Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.
-
A.
a = 2
-
B.
a = 0
-
C.
a = -2
-
D.
a = 1
Câu 18 :
Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại
x = y = -2.
-
A.
64a + 8b + 4c
-
B.
-64a – 8b – 4c
-
C.
64a – 8b + 8c
-
D.
64a – 8b + 4c
Câu 19 :
Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:
-
A.
Q = 0
-
B.
Q > 0
-
C.
Q < 0
-
D.
Không xác định được
Câu 20 :
Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:
-
A.
2
-
B.
1
-
C.
3
-
D.
0
Câu 21 :
Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
-
A.
0
-
B.
1
-
C.
-1
-
D.
0 và 1
Câu 22 :
Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)
-
A.
\(P = {x^2} - 12{{x}}y\)
-
B.
\(P = {x^2} + 10{y^2}\)
-
C.
\(P = - {x^2} - 12{{x}}y + 10{y^2}\)
-
D.
\(P = 12{{x}}y + 10{y^2}\)
Câu 23 :
Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008
-
A.
\({20092008^4}\)
-
B.
\({20082009^4}\)
-
C.
-5
-
D.
5
Câu 24 :
\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:
-
A.
10
-
B.
1
-
C.
-1
-
D.
11
Câu 25 :
Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:
-
A.
\(Q = 3{{{x}}^4}\)
-
B.
\(Q = 3{{{x}}^4} - 4\)
-
C.
\(Q = - 3{{{x}}^4} - 4\)
-
D.
\(Q = 2{{{x}}^4} + 4\)
Câu 26 :
Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)
-
A.
\(7{{{x}}^2} - 6{{x}} + 16\)
-
B.
\(3{{{x}}^2} + 2\)
-
C.
\(3{{{x}}^2} + 6{{x}} + 16\)
-
D.
\(7{{{x}}^2} + 2\)
Câu 27 :
Thu gọn đa thức \(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:
-
A.
\(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
-
B.
\(M = 12{{x}}{y^2}\)
-
C.
\(M = - 2{{x}}{y^2}\)
-
D.
\(M = - 6{{{x}}^2}y - 2{{x}}{y^2}\)
Câu 28 :
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
-
A.
8
-
B.
-8
-
C.
-13
-
D.
10
Câu 29 :
Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:
-
A.
-1 và 2
-
B.
-1 và 0
-
C.
1 và 0
-
D.
2 và 0
Câu 30 :
Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):
-
A.
5; 3; 1.
-
B.
8; 2; -7.
-
C.
13; 4; -6; 1.
-
D.
8; 2; -7; 1.
Câu 31 :
Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:
-
A.
4.
-
B.
5.
-
C.
6.
-
D.
7.
Câu 32 :
Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
-
B.
\(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
-
C.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
-
D.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)
Lời giải và đáp án
Câu 1 :
Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:
-
A.
Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
-
B.
Nếu \(A = 0\) thì \(x = y = z = 0\).
-
C.
Chỉ có 1 giá trị của \(x\) để \(A = 0\).
-
D.
Chỉ có 1 giá trị của \(y\) để \(A = 0\).
Đáp án : A
Ta xét dấu của các hệ số và các biến.
Các số không âm nhân với nhau ta được tích là số không âm.
\(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\,\,\,\left( {a \ne 0} \right).\)
Ta có: \(2{a^2} + \frac{1}{{{a^2}}} > 0\) với \(a \ne 0.\)
Lại có: \({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\) nên \({x^2}{y^4}{z^6} \ge 0\) với mọi \(x;\,y;\,z.\)
Câu 2 :
Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).
-
A.
a = 9.
-
B.
a = 1.
-
C.
a = 3.
-
D.
a = 2.
Đáp án : C
Thực hiện cộng các đơn thức rồi cho kết quả hệ số bằng 6. Từ đó tìm ra hằng số a
Ta có \(ax{y^3} + \left( { - 4xy^3} \right) + 7x{y^3} = \left( {a - 4 + 7} \right)x{y^3}\)
Từ giả thiết suy ra:
\(a + 3 = 6 \\ a = 6 - 3 \\ a = 3\)
Câu 3 :
Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
-
A.
\(59{x^5}{y^4}\).
-
B.
\(49{x^5}{y^4}\).
-
C.
\(65{x^5}{y^4}\).
-
D.
\(17{x^5}{y^4}\).
Đáp án : C
Thu gọn các đơn thức nhỏ trong biểu thức đại số rồi mới tiến hằng cộng, trừ các đơn thức đồng dạng.
Áp dụng các công thức \({\left( {{a^m}} \right)^n} = {a^{m.n}}\), \({a^m}.{a^n} = {a^{m + n}}\), \({\left( {x.y} \right)^n} = {x^n}.{y^m}\).
Ta có:
\(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
\( = 9{\left( {{x^2}} \right)^2}{\left( {{y^2}} \right)^2}x - {\left( { - 2} \right)^3}{x^3}{y^3}{x^2}y + {3.2^4}{x^4}x{y^4}\)
\( = 9{x^4}{y^4}x - \left( { - 8} \right){x^3}{y^3}{x^2}y + 48{x^4}x{y^4}\)
\( = 9{x^5}{y^4} + 8{x^5}{y^4} + 48{x^5}{y^4}\)
\( = \left( {9 + 8 + 48} \right){x^5}{y^4}\)
\( = 65{x^5}{y^4}\).
Câu 4 :
Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).
-
A.
\(10\).
-
B.
\(20\).
-
C.
\( - 40\).
-
D.
\(40\).
Đáp án : C
Thay \(x = - 1\), \(y = - 1\), \(z = - 2\) vào đơn thức \(5{x^4}{y^2}{z^3}\) ta được: \(5.{\left( { - 1} \right)^4}.{\left( { - 1} \right)^2}.{\left( { - 2} \right)^3} = - 40.\)
Câu 5 :
Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\) là hằng số) là:
-
A.
\(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
-
B.
\({a^5}{x^3}{y^3}\).
-
C.
\(\frac{{27}}{8}{a^5}\).
-
D.
\({x^3}{y^3}\).
Đáp án : D
\(\begin{array}{l}{\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right) = \frac{{{a^2}}}{{16}}.3xy.4{a^2}{x^2}.\frac{9}{2}a{y^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{{a^2}}}{{16}}.3.4{a^2}.\frac{9}{2}a} \right).{x^3}{y^3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{27}}{8}{a^5}{x^3}{y^3}.\end{array}\)
Phần biến số của đơn thức đã cho là: \({x^3}{y^3}.\)
a là hằng số nên thuộc vào phần hệ số.
Câu 6 :
Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:
-
A.
\( - 1500\).
-
B.
\( - 750\).
-
C.
30
-
D.
1500
Đáp án : D
Ta có:
\(\begin{array}{l}{\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3} \\= 4{x^4}.\left( { - 3{y^3}} \right).\left( { - 125{x^3}{z^3}} \right)\\= 4.\left( { - 3} \right).\left( { - 125} \right).{x^4}.{x^3}.{y^3}.{z^3}\\= 1500{x^7}{y^3}{z^3}.\end{array}\)
Hệ số của đơn thức đã cho là \(1500.\)
Câu 7 :
Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:
-
A.
\(\frac{{7}}{{2}}{x^4}{y^3}\).
-
B.
\(\frac{1}{2}{x^3}{y^3}\).
-
C.
\(-\frac{{7}}{{2}}{x^4}{y^3}\).
-
D.
\( - \frac{1}{2}{x^2}{y^2}\).
Đáp án : A
Ta có:
\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right) = \left[ {\frac{5}{4}.\left( { - \frac{6}{5}} \right).\left( {\frac{{ - 7}}{3}} \right)} \right]\left( {{x^2}.x.x} \right).\left( {y.y.y} \right) = \frac{{7}}{{2}}{x^4}{y^3}.\)
Câu 8 :
Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là
-
A.
\( - 21{y^2}z\).
-
B.
\( - 3{y^2}z\).
-
C.
\(3{y^4}{z^2}\).
-
D.
\(3{y^2}z\).
Đáp án : D
\( - 9{y^2}z - \left( { - 12{y^2}z} \right) = \left( { - 9 + 12} \right){y^2}z\)\( = 3{y^2}z\).
Câu 9 :
Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là
-
A.
\(10{x^2}{y^4}\).
-
B.
\(9{x^2}{y^4}\).
-
C.
\( - 9{x^2}{y^4}\).
-
D.
\( - 4{x^2}{y^4}\).
Đáp án : A
\(3{x^2}{y^4} + 7{x^2}{y^4} = \left( {3 + 7} \right){x^2}{y^4} = 10{x^2}{y^4}\)
Câu 10 :
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:
-
A.
0; 1; 3; 4.
-
B.
0; 3; 1; 4.
-
C.
0; 1; 2; 3.
-
D.
0; 1; 3; 2.
Đáp án : A
Đơn thức\( - 10\)có bậc là \(0\).
Đơn thức \(\frac{1}{3}x\) có bậc là \(1.\)
Đơn thức\(2{x^2}y\) có bậc là \(2 + 1 = 3.\)
Đơn thức\(5{x^2}.{x^2} = 5{x^4}\) có bậc là \(4.\)
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là: 0; 1; 3; 4.
Câu 11 :
Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.
-
A.
\(a{b^2}{x^2}yz\).
-
B.
\({x^2}y\).
-
C.
\({x^2}yz\).
-
D.
\(100ab\).
Đáp án : C
Câu 12 :
Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.
-
A.
\( - 36\).
-
B.
\( - 36{a^2}{b^2}\).
-
C.
\(36{a^2}{b^2}\).
-
D.
\( - 36{a^2}\).
Đáp án : B
Câu 13 :
Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:
-
A.
\( - 6{x^3}{y^3}\).
-
B.
\(6{x^3}{y^3}\).
-
C.
\(6{x^3}{y^2}\).
-
D.
\( - 6{x^2}{y^3}\).
Đáp án : A
Ta có: \(2.\left( { - 3{x^3}y} \right){y^2} = 2.\left( { - 3} \right).{x^3}.y.{y^2} = - 6{x^3}{y^3}\).
Câu 14 :
Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).
-
A.
\(2\).
-
B.
\(3\).
-
C.
\(4\).
-
D.
\(5\).
Đáp án : B
Sử dụng định nghĩa đơn thức đồng dạng: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\)và có cùng phần biến. Các số khác \(0\) được coi là những đơn thức đồng dạng.
Có ba nhóm đơn thức đồng dạng trong các đơn thức đã cho gồm :
Nhóm thứ nhất : \( - \frac{2}{3}{x^3}y\), \(2{x^3}y\).
Nhóm thứ hai: \(5{x^2}y\), \(\frac{1}{2}{x^2}y\).
Nhóm thứ ba: \( - x{y^2}\), \(6x{y^2}\).
\( \frac {3}{4} \) không có đơn thức nào đồng dạng.
Câu 15 :
Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?
-
A.
2.
-
B.
\(5x + 9\).
-
C.
\({x^3}{y^2}\).
-
D.
\(3x\).
Đáp án : B
Sử dụng định nghĩa đơn thức: Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.
Theo định nghĩa đơn thức thì \(5x + 9\) không là đơn thức.
Câu 16 :
Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)
-
A.
6
-
B.
8
-
C.
12
-
D.
0
Đáp án : C
\(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2} = (3{{{x}}^4} + 3{{{x}}^2}{y^2}) + (2{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}) = 3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right)\)
Mà \({x^2} + {y^2} = 2\) nên ta có: \(3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right) = 6{{{x}}^2} + 6{y^2} = 6\left( {{x^2} + {y^2}} \right) = 6.2 = 12\)
Câu 17 :
Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.
-
A.
a = 2
-
B.
a = 0
-
C.
a = -2
-
D.
a = 1
Đáp án : C
Ta có:
\(\begin{array}{l}4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\\ = \left( {4{{{x}}^5}{y^2} + 2{{a}}{{{x}}^5}{y^2}} \right) + \left( { - 5{{{x}}^3}y + 7{{{x}}^3}y} \right)\\ = \left( {4 + 2{{a}}} \right){x^5}{y^2} + 2{{{x}}^3}y\end{array}\)
Để bậc của đa thức đã cho bằng 4 thì hệ số của \({x^5}{y^2}\) phải bằng 0 (vì nếu hệ số của \({x^5}{y^2}\) khác 0 thì đa thức có bậc là 5 + 2 = 7.
Do đó \(4 + 2{{a}} = 0 \) suy ra \( a = - 2\)
Câu 18 :
Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại
x = y = -2.
-
A.
64a + 8b + 4c
-
B.
-64a – 8b – 4c
-
C.
64a – 8b + 8c
-
D.
64a – 8b + 4c
Đáp án : D
\(\begin{array}{l}A = a.{\left( { - 2} \right)^3}.{\left( { - 2} \right)^3} + b.{\left( { - 2} \right)^2}.\left( { - 2} \right) + c.\left( { - 2} \right).\left( { - 2} \right)\\A = a.\left( { - 8} \right).\left( { - 8} \right) + b.4.\left( { - 2} \right) + c.4\\A = 64{{a}} - 8b + 4c\end{array}\)
Câu 19 :
Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:
-
A.
Q = 0
-
B.
Q > 0
-
C.
Q < 0
-
D.
Không xác định được
Đáp án : B
\(\begin{array}{l}{x^2}{y^3} > 0\\2{{{x}}^2} > 0\\4 > 0\end{array}\)
Suy ra \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4 > 0\)
Câu 20 :
Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:
-
A.
2
-
B.
1
-
C.
3
-
D.
0
Đáp án : D
Ta có:
\(\begin{array}{l}\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\\ = {x^2} + {y^2} - 2{{x}}y - {x^2} - {y^2} - 2{{x}}y + 4{{x}}y - 1\\ = \left( {{x^2} - {x^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 4{{x}}y + 4{{x}}y} \right) - 1 = - 1\end{array}\)
Bậc của -1 là 0
Câu 21 :
Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
-
A.
0
-
B.
1
-
C.
-1
-
D.
0 và 1
Đáp án : A
Ta có:
\(\begin{array}{l}Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\\Q = (5 + 2 + 1){{{x}}^{n + 2}} + (3 + 4 + 1){{{x}}^n} \\Q = 8{{{x}}^{n + 2}} + 8{{{x}}^n} = 8{{{x}}^n}\left( {{x^2} + 1} \right)\end{array}\)
Vì \({x^2} + 1 > 0\) với mọi x nên \(Q = 0 \) khi:
\(8{{{x}}^n}\left( {{x^2} + 1} \right) = 0 \)
\(8{{{x}}^n}= 0 \)
\({{{x}}^n}= 0 \)
\(x = 0\)
Vậy x = 0 thì Q = 0
Câu 22 :
Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)
-
A.
\(P = {x^2} - 12{{x}}y\)
-
B.
\(P = {x^2} + 10{y^2}\)
-
C.
\(P = - {x^2} - 12{{x}}y + 10{y^2}\)
-
D.
\(P = 12{{x}}y + 10{y^2}\)
Đáp án : A
\(\begin{array}{l}P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\\P = 3{{{x}}^2} - 6{{x}}y - 5{y^2} - 2{{{x}}^2} - 6{{x}}y + 5{y^2}\\P = {x^2} - 12{{x}}y\end{array}\)
Câu 23 :
Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008
-
A.
\({20092008^4}\)
-
B.
\({20082009^4}\)
-
C.
-5
-
D.
5
Đáp án : D
Thay giá trị x = -1; y = 20092008 vào biểu thức \( - 5{{{x}}^3}\) ta được:
\( - 5.{\left( { - 1} \right)^3} = 5\)
Câu 24 :
\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:
-
A.
10
-
B.
1
-
C.
-1
-
D.
11
Đáp án : C
Ta tìm các giá trị của x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) sau đó thay vào biểu thức.
Vì \(2{{{x}}^2} + 7 > 0\) với mọi x nên ta có:
\(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) khi \( x + 2 = 0 \), do đó \(x = - 2\)
Thay x = -2 vào biểu thức \({x^3} - 3{{x}} + 1\) ta được:
\({\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1\)
Câu 25 :
Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:
-
A.
\(Q = 3{{{x}}^4}\)
-
B.
\(Q = 3{{{x}}^4} - 4\)
-
C.
\(Q = - 3{{{x}}^4} - 4\)
-
D.
\(Q = 2{{{x}}^4} + 4\)
Đáp án : D
Thay \(y = x{;^{}}z = {x^2}\) vào đa thức Q rồi tính
Công thức lũy thừa \({\left( {{x^n}} \right)^m} = {x^{n.m}}\)
\(Q = 3{{{x}}^4} + 2{{{x}}^4} - 3{\left( {{x^2}} \right)^2} + 4 = 3{{{x}}^4} + 2{{{x}}^4} - 3{{{x}}^4} + 4 = 2{{{x}}^4} + 4\)
Câu 26 :
Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)
-
A.
\(7{{{x}}^2} - 6{{x}} + 16\)
-
B.
\(3{{{x}}^2} + 2\)
-
C.
\(3{{{x}}^2} + 6{{x}} + 16\)
-
D.
\(7{{{x}}^2} + 2\)
Đáp án : B
\(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right) \)
\(= 5{{{x}}^2} - 3{{x}} + 9 - 2{{{x}}^2} + 3{{x}} - 7 \)
\(= \left(5{{{x}}^2} - 2{{{x}}^2} \right) + \left(- 3{{x}} + 3{{x}} \right) + (9 - 7)\)
\(= 3{{{x}}^2} + 2\)
Câu 27 :
Thu gọn đa thức \(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:
-
A.
\(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
-
B.
\(M = 12{{x}}{y^2}\)
-
C.
\(M = - 2{{x}}{y^2}\)
-
D.
\(M = - 6{{{x}}^2}y - 2{{x}}{y^2}\)
Đáp án : C
Nhóm các đơn thức đồng dạng với nhau
Ta có:
\(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2} = \left( { - 3{{{x}}^2}y + 3{{{x}}^2}y} \right) + \left( { - 7{{x}}{y^2} + 5{{x}}{y^2}} \right) = - 2{{x}}{y^2}\)
Câu 28 :
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
-
A.
8
-
B.
-8
-
C.
-13
-
D.
10
Đáp án : B
Ta có: \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2} = 8{{{x}}^3}{y^2}\)
Thay x = -1; y = 1 vào biểu thức \(8{{{x}}^3}{y^2}\) ta có: \(-8.{\left( { - 1} \right)^3}{.1^2} = - 8\)
Câu 29 :
Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:
-
A.
-1 và 2
-
B.
-1 và 0
-
C.
1 và 0
-
D.
2 và 0
Đáp án : C
Thu gọn đa thức rồi xác định hệ số cao nhất và hệ số tự do.
Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất.
Ta có: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3} = {x^4} - 2{{{x}}^3} + 2{{{x}}^2}\) có hệ số cao nhất là 1 và hệ số tự do là 0
Câu 30 :
Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):
-
A.
5; 3; 1.
-
B.
8; 2; -7.
-
C.
13; 4; -6; 1.
-
D.
8; 2; -7; 1.
Đáp án : D
Câu 31 :
Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:
-
A.
4.
-
B.
5.
-
C.
6.
-
D.
7.
Đáp án : D
\({x^2}{y^5}\) có bậc là 7.
\({x^2}{y^4}\) có bậc là 6
\({y^6}\) có bậc là 6
1 có bậc là 0
Vậy đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) có bậc là 7
Câu 32 :
Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
-
B.
\(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
-
C.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
-
D.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)
Đáp án : A
Luyện tập và củng cố kiến thức Bài 2: Các phép toán với đa thức nhiều biến Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 3: Hằng đẳng thức đáng nhớ Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phân tích đa thức thành nhân tử Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 5: Phân thức đại số Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 6: Cộng, trừ phân thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 7: Nhân, chia phân thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết