Đề bài
Câu 1 :
Cho đa thức \(P(x) = 3 + 5{{{x}}^2} - 3{{{x}}^3} + 4{{{x}}^2} - 2{{x}} - {x^3} + 5{{{x}}^5}.\)
Thu gọn và sắp xếp đa thức P(x) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = 3 + 2{{x}} + 9{{{x}}^2}\)
-
B.
\(P(x) = 5{{{x}}^5} - 4{{{x}}^3} + 9{{{x}}^2} - 2{{x}} + 3\)
-
C.
\(P(x) = 3{{{x}}^5} - 4{{{x}}^3} + 9{{{x}}^2}\)
-
D.
\(P(x) = 2{{x}} + 9\)
Câu 2 :
Thu gọn đa thức \(\left( { - 3{{{x}}^2}y - 2{{x}}{y^2} + 16} \right) + \left( { - 2{{{x}}^2}y + 5{{x}}{y^2} - 10} \right)\) ta được.
-
A.
\( - {x^2}y - 7{{x}}{y^2} + 26\)
-
B.
\( - 5{{{x}}^2}y + 3{{x}}{y^2} + 6\)
-
C.
\( - 5{{{x}}^2}y - 3{{x}}{y^2} + 6\)
-
D.
\(5{{{x}}^2}y - 3{{x}}{y^2} - 6\)
Câu 3 :
Hệ số cao nhất của đa thức: \(P(x) = 4{{{x}}^2}y + 6{{{x}}^3}{y^2} - 10{{{x}}^2}y + 4{{{x}}^3}{y^2}\)là
-
A.
10
-
B.
-6
-
C.
4
-
D.
3
Câu 4 :
Bậc của đa thức: \(2002{{{x}}^2}{y^3}z + 2{{{x}}^3}{y^2}{z^2} + 7{{{x}}^2}{y^3}z\) là:
-
A.
5
-
B.
6
-
C.
7
-
D.
8
Câu 5 :
Cho 2 đa thức:
\(\begin{array}{l}P(x) = {x^2} - 3{{x}} + 2\\Q(x) = {x^2} + x - 2\end{array}\)
Tính P(x) – Q(x):
-
A.
P(x) – Q(x) = -4x – 4
-
B.
P(x) – Q(x) = 4x – 4
-
C.
P(x) – Q(x) = -4x + 4
-
D.
P(x) – Q(x) = 4x + 4
Câu 6 :
Cho các đa thức:
\(\begin{array}{l}M = 3{{{x}}^3} - {x^2}y + 2{{x}}y + 3\\N = {x^2}y - 2{{x}}y - 2\end{array}\)
Tính M + 2N
-
A.
\(3{{{x}}^3} - 1\)
-
B.
\(3{{{x}}^3} + {x^2}y - 2{{x}}y + 1\)
-
C.
\(3{{{x}}^3} - {x^2}y + 2{{x}}y - 1\)
-
D.
\(3{{{x}}^3} + {x^2}y - 2{{x}}y - 1\)
Câu 7 :
Cho các đa thức:
\(\begin{array}{l}M = 3{{{x}}^3} - {x^2}y + 2{{x}}y + 2\\P = 3{{{x}}^3} - 2{{{x}}^2}y - xy + 3\end{array}\)
Tính M – P
-
A.
\({x^2}y + 3{{x}}y + 1\)
-
B.
\({x^2}y - 3{{x}}y - 1\)
-
C.
\( - {x^2}y + 3{{x}}y - 1\)
-
D.
\({x^2}y + 3{{x}}y - 1\)
Câu 8 :
Cho \(f(x) = 3{{{x}}^4} + 2{{{x}}^3} - 2{{{x}}^4} + {x^2} - 5{{x}} + 6\)
Tính \(f( - 1)\)
-
A.
8
-
B.
9
-
C.
11
-
D.
10
Câu 9 :
Tính \(\left( {xy + {y^2} - {x^2}{y^2} - 2} \right) + \left( {{x^2}{y^2} + 5 - {y^2}} \right)\)
-
A.
xy + 3
-
B.
xy – 3
-
C.
–xy + 3
-
D.
–xy - 3
Câu 10 :
Cho các đa thức
\(\begin{array}{l}A = 4{{{x}}^2} - 5{{x}}y + 3{y^2}\\B = 3{{{x}}^2} + 2{{x}}y + {y^2}\\C = - {x^2} + 3{{x}}y + 2{y^2}\end{array}\)
Tính A + B +C:
-
A.
\(7{{{x}}^2} + 6{y^2}\)
-
B.
\(5{{{x}}^2} + 5{y^2}\)
-
C.
\(6{{{x}}^2} + 6{y^2}\)
-
D.
\(6{{{x}}^2} - 6{y^2}\)
Câu 11 :
Cho đa thức
\(\begin{array}{l}A = 4{{{x}}^2} - 5{{x}}y + 3{y^2}\\B = 3{{{x}}^2} + 2{{x}}y + {y^2}\\C = - {x^2} + 3{{x}}y + 2{y^2}\end{array}\)
Tính A – B – C:
-
A.
\( - 10{{{x}}^2} + 2{{x}}y\)
-
B.
\( - 2{{{x}}^2} - 10{{x}}y\)
-
C.
\(2{{{x}}^2} + 10{{x}}y\)
-
D.
\(2{{{x}}^2} - 10{{x}}y\)
Câu 12 :
Cho đa thức
\(\begin{array}{l}A = 4{{{x}}^2} - 5{{x}}y + 3{y^2}\\B = 3{{{x}}^2} + 2{{x}}y + {y^2}\\C = - {x^2} + 3{{x}}y + 2{y^2}\end{array}\)
Tính C – A – B:
-
A.
\(8{{{x}}^2} + 6{{x}}y + 2{y^2}\)
-
B.
\( - 8{{{x}}^2}{{ + 6x}}y - 2{y^2}\)
-
C.
\(8{{{x}}^2}{{ - 6x}}y - 2{y^2}\)
-
D.
\(8{{{x}}^2} - 6{{x}}y + 2{y^2}\)
Câu 13 :
Tìm đa thức M biết \(M + \left( {5{{{x}}^2} - 2{{x}}y} \right) = 6{{{x}}^2} + 10{{x}}y - {y^2}\)
-
A.
\(M = {x^2} + 12{{x}}y - {y^2}\)
-
B.
\(M = {x^2} - 12{{x}}y - {y^2}\)
-
C.
\(M = {x^2} + 12{{x}}y + {y^2}\)
-
D.
\(M = - {x^2} - 12{{x}}y - {y^2}\)
Câu 14 :
Tìm đa thức M biết: \(M - \left( {{{3x}}y - 4{y^2}} \right) = {{{x}}^2}{{ - 7x}}y + 8{y^2}\)
-
A.
\(M = {x^2}{{ - 4x}}y + 4{y^2}\)
-
B.
\(M = {x^2}{{ + 4x}}y + 4{y^2}\)
-
C.
\(M = - {x^2}{{ - 4x}}y + 4{y^2}\)
-
D.
\(M = {x^2} + 10{{x}}y + 4{y^2}\)
Câu 15 :
Tính giá trị của đa thức
\(C = xy + {x^2}{y^2} + {x^3}{y^3} + ...... + {x^{100}}{y^{100}}\) tại x = -1; y = -1
-
A.
-100
-
B.
100
-
C.
0
-
D.
50
Câu 16 :
Tính giá trị của đa thức
\(N = {x^3} + {x^2}y - 2{{{x}}^2} - xy - {y^2} + 3y + x - 1\) biết x + y – 2 = 0
-
A.
-1
-
B.
0
-
C.
2
-
D.
1
Câu 17 :
Cho
\(\begin{array}{l}M = x - (y - z) - 2{{x}} + y + z - (2 - x - y)\\N = x - \left[ {x - \left( {y - 2{{z}}} \right) - 2{{z}}} \right]\end{array}\)
Tính M – N
-
A.
-2z + 2
-
B.
-2x – 2y – 2
-
C.
2z – 2
-
D.
-2x + 2y - 2
Câu 18 :
Nếu 3(4x + 5y) = P thì 12(12x+15y) bằng
-
A.
12P
-
B.
36P
-
C.
4P
-
D.
20P
Câu 19 :
Bác Nam có một mảnh vườn hình chữ nhật có chiều dài là: \(2{y^2} + 12 + xy(m)\); chiều rộng là 2xy.(m). tính chu vi của khu vườn biết x = 4 và y = 4.
-
A.
184 m
-
B.
60m
-
C.
32m
-
D.
184\({m^2}\)
Câu 20 :
Khu vườn trồng mía của nhà bác Minh ban đầu có dạng hình vuông biết chu vi hình vuông là 20(m) sau đó mở rộng bên phải thêm y(m) phía dưới thêm 8x(m) nên mảnh vườn trở thành hình chữ nhật. Tính chu vi của khu vườn sau khi được mở rộng theo x, y
-
A.
y +5
-
B.
8x + 5
-
C.
2y +16x + 20
-
D.
4x + 8y
Câu 21 :
Một cửa hàng buổi sáng bán được: \(8{{{x}}^3}y + 5{{{x}}^6}{y^5} - 3{{{x}}^5}{y^4}\); buổi chiều bán được: \({x^6}{y^5} - {x^5}{y^4}\)(bao gạo). Tính số bao gạo mà của hàng bán được trong một ngày.
-
A.
\(8{{{x}}^3}y + 6{{{x}}^6}{y^5} - 4{{{x}}^5}{y^4}\)
-
B.
\(8{{{x}}^3}y + 6{{{x}}^6}{y^5}\)
-
C.
\(8{{{x}}^3}y + 5{{{x}}^6}{y^5} - 4{{{x}}^5}{y^4}\)
-
D.
\(6{{{x}}^6}{y^5} - 4{{{x}}^5}{y^4}\)
Câu 22 :
Cho \(P = xyz + {x^2}{y^2}{z^2} + .... + {x^{2022}}{y^{2022}}{z^{2022}}\). Tính P biết: x = y = 1; z = -1.
-
A.
P = -2022
-
B.
P = 0
-
C.
P = 2022
-
D.
P = 1011
Câu 23 :
Cho đa thức A = 3x – 1; B = 2y + 4x. Tính đa thức C = A + B khi x = 2y = 1.
-
A.
C = 8
-
B.
C = 7
-
C.
C = 9
-
D.
C = 10
Câu 24 :
Cho
\(\begin{array}{l}f\left( x \right) = {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1\\g\left( x \right) = - {x^{2n + 1}} + {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1\end{array}\)
Biết \(h\left( x \right) = f\left( x \right) - g\left( x \right)\). Tính \(h\left( {\frac{1}{{10}}} \right)\)
-
A.
\(h\left( {\frac{1}{{10}}} \right) = \frac{{ - 1}}{{{{10}^{2n + 1}}}}\)
-
B.
\(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n + 1}}}}\)
-
C.
\(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n - 1}}}}\)
-
D.
\(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n - 1}}}}\)
Một tấm bìa cứng hình chữ nhật có chiều dài là x + 43 (cm), chiều rộng x+30 (cm). Người ta cắt ở mỗi góc của tấm bìa hình vuông cạnh \({y^2} + 1\) và xếp phần còn lại thành một cái hộp không nắp.

Tính chiều dài của hình hộp chữ nhật.
-
A.
\(x + 2{y^2} + 41(cm)\)
-
B.
\({x^2} + 2{y^2}\left( {cm} \right)\)
-
C.
\(x - 2{y^2} + 41\left( {cm} \right)\)
-
D.
\(x - 2{y^2}\left( {cm} \right)\)
Tính chiều rộng của hình hộp chữ nhật.
-
A.
\({x^2} - 2{y^2}(cm)\)
-
B.
\(x - 2{y^2} + 28\left( {cm} \right)\)
-
C.
\(x - {y^2}\left( {cm} \right)\)
-
D.
\(x + 28\left( {cm} \right)\)
Lời giải và đáp án
Câu 1 :
Cho đa thức \(P(x) = 3 + 5{{{x}}^2} - 3{{{x}}^3} + 4{{{x}}^2} - 2{{x}} - {x^3} + 5{{{x}}^5}.\)
Thu gọn và sắp xếp đa thức P(x) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = 3 + 2{{x}} + 9{{{x}}^2}\)
-
B.
\(P(x) = 5{{{x}}^5} - 4{{{x}}^3} + 9{{{x}}^2} - 2{{x}} + 3\)
-
C.
\(P(x) = 3{{{x}}^5} - 4{{{x}}^3} + 9{{{x}}^2}\)
-
D.
\(P(x) = 2{{x}} + 9\)
Đáp án : B
\(\begin{array}{l}P(x) = 3 + 5{{{x}}^2} - 3{{{x}}^3} + 4{{{x}}^2} - 2{{x}} - {x^3} + 5{{{x}}^5}\\P(x) = 5{{{x}}^5} + ( - 3{{{x}}^3} - {x^3}) + (5{{{x}}^2} + 4{{{x}}^2}) - 2{{x}} + 3\\P(x) = 5{{{x}}^5} - 4{{{x}}^3} + 9{{{x}}^2} - 2{{x}} + 3\end{array}\)
Câu 2 :
Thu gọn đa thức \(\left( { - 3{{{x}}^2}y - 2{{x}}{y^2} + 16} \right) + \left( { - 2{{{x}}^2}y + 5{{x}}{y^2} - 10} \right)\) ta được.
-
A.
\( - {x^2}y - 7{{x}}{y^2} + 26\)
-
B.
\( - 5{{{x}}^2}y + 3{{x}}{y^2} + 6\)
-
C.
\( - 5{{{x}}^2}y - 3{{x}}{y^2} + 6\)
-
D.
\(5{{{x}}^2}y - 3{{x}}{y^2} - 6\)
Đáp án : B
\(\begin{array}{l}\left( { - 3{{{x}}^2}y - 2{{x}}{y^2} + 16} \right) + \left( { - 2{{{x}}^2}y + 5{{x}}{y^2} - 10} \right)\\ = - 3{{{x}}^2}y - 2{{x}}{y^2} + 16 - 2{{{x}}^2}y + 5{{x}}{y^2} - 10\\ = \left( { - 3{{{x}}^2}y - 2{{{x}}^2}y} \right) + \left( { - 2{{x}}{y^2} + 5{{x}}{y^2}} \right) + \left( {16 - 10} \right)\\ = - 5{{{x}}^2}y + 3{{x}}{y^2} + 6\end{array}\)
Câu 3 :
Hệ số cao nhất của đa thức: \(P(x) = 4{{{x}}^2}y + 6{{{x}}^3}{y^2} - 10{{{x}}^2}y + 4{{{x}}^3}{y^2}\)là
-
A.
10
-
B.
-6
-
C.
4
-
D.
3
Đáp án : A
Ta có:
\(\begin{array}{l}P(x) = 4{{{x}}^2}y + 6{{{x}}^3}{y^2} - 10{{{x}}^2}y + 4{{{x}}^3}{y^2}\\ = \left( {4{{{x}}^2}y - 10{{{x}}^2}{{y}}} \right) + \left( {6{{{x}}^3}{y^2} + 4{{{x}}^3}{y^2}} \right)\\ = - 6{{{x}}^2}y + 10{{{x}}^3}{y^2}\end{array}\)
Suy ra hệ số cao nhất của P(x) là hệ số của \({{{x}}^3}{y^2}\) nên hệ số cao nhất của P(x) là 10
Câu 4 :
Bậc của đa thức: \(2002{{{x}}^2}{y^3}z + 2{{{x}}^3}{y^2}{z^2} + 7{{{x}}^2}{y^3}z\) là:
-
A.
5
-
B.
6
-
C.
7
-
D.
8
Đáp án : C
\(\begin{array}{l}2002{{{x}}^2}{y^3}z + 2{{{x}}^3}{y^2}{z^2} + 7{{{x}}^2}{y^3}z\\ = \left( {2002{{{x}}^2}{y^3}z + 7{{{x}}^2}{y^3}z} \right) + 2{{{x}}^3}{y^2}{z^2}\\ = 2009{{{x}}^2}{y^3}z + 2{{{x}}^3}{y^2}{z^2}\end{array}\)
Bậc của đa thức P(x) là: 7.
Câu 5 :
Cho 2 đa thức:
\(\begin{array}{l}P(x) = {x^2} - 3{{x}} + 2\\Q(x) = {x^2} + x - 2\end{array}\)
Tính P(x) – Q(x):
-
A.
P(x) – Q(x) = -4x – 4
-
B.
P(x) – Q(x) = 4x – 4
-
C.
P(x) – Q(x) = -4x + 4
-
D.
P(x) – Q(x) = 4x + 4
Đáp án : C
\(\begin{array}{l}P(x) - Q(x)\\ = ({x^2} - 3{{x}} + 2) - ({x^2} + x - 2)\\ = {x^2} - 3{{x}} + 2 - {x^2} - x + 2\\ = - 4{{x}} + 4\end{array}\)
Câu 6 :
Cho các đa thức:
\(\begin{array}{l}M = 3{{{x}}^3} - {x^2}y + 2{{x}}y + 3\\N = {x^2}y - 2{{x}}y - 2\end{array}\)
Tính M + 2N
-
A.
\(3{{{x}}^3} - 1\)
-
B.
\(3{{{x}}^3} + {x^2}y - 2{{x}}y + 1\)
-
C.
\(3{{{x}}^3} - {x^2}y + 2{{x}}y - 1\)
-
D.
\(3{{{x}}^3} + {x^2}y - 2{{x}}y - 1\)
Đáp án : D
\(\begin{array}{l}M + 2N\\ = \left( {3{{{x}}^3} - {x^2}y + 2{{x}}y + 3} \right) + 2({x^2}y - 2{{x}}y - 2)\\ = 3{{{x}}^3} - {x^2}y + 2{{x}}y + 3 + 2{{{x}}^2}y - 4{{x}}y - 4\\ = 3{{{x}}^3} + {x^2}y - 2{{x}}y - 1\end{array}\)
Đáp án đúng là : D
Câu 7 :
Cho các đa thức:
\(\begin{array}{l}M = 3{{{x}}^3} - {x^2}y + 2{{x}}y + 2\\P = 3{{{x}}^3} - 2{{{x}}^2}y - xy + 3\end{array}\)
Tính M – P
-
A.
\({x^2}y + 3{{x}}y + 1\)
-
B.
\({x^2}y - 3{{x}}y - 1\)
-
C.
\( - {x^2}y + 3{{x}}y - 1\)
-
D.
\({x^2}y + 3{{x}}y - 1\)
Đáp án : D
Tính M – P và nhóm các đơn thức đồng dạng.
\(\begin{array}{l}M - P\\ = \left( {3{{{x}}^3} - {x^2}y + 2{{x}}y + 2} \right) - \left( {3{{{x}}^3} - 2{{{x}}^2}y - xy + 3} \right)\\ = 3{{{x}}^3} - {x^2}y + 2{{x}}y + 2 - 3{{{x}}^3} + 2{{{x}}^2}y + xy - 3\\ = {x^2}y + 3{{x}}y - 1\end{array}\)
Câu 8 :
Cho \(f(x) = 3{{{x}}^4} + 2{{{x}}^3} - 2{{{x}}^4} + {x^2} - 5{{x}} + 6\)
Tính \(f( - 1)\)
-
A.
8
-
B.
9
-
C.
11
-
D.
10
Đáp án : C
Thu gọn đa thức theo quy tắc cộng trừ đa thức
Thay x = -1 vào đa thức f(x) thu gọn
Ta có: \(\begin{array}{l}f(x) = 3{{{x}}^4} + 2{{{x}}^3} - 2{{{x}}^4} + {x^2} - 5{{x}} + 6\\ = (3{x^4} - 2{{x}}{}^4) + 2{{{x}}^3} + {x^2} - 5{{x}} + 6\\ = {x^4} + 2{{{x}}^3} + {x^2} - 5{{x}} + 6\end{array}\)
Sau đó thay x = -1 vào đa thức \(f\left( x \right)\)thu gọn ta được
\(f\left( { - 1} \right) = {\left( { - 1} \right)^4} + 2{\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} - 5\left( { - 1} \right) + 6 = 11\)
Câu 9 :
Tính \(\left( {xy + {y^2} - {x^2}{y^2} - 2} \right) + \left( {{x^2}{y^2} + 5 - {y^2}} \right)\)
-
A.
xy + 3
-
B.
xy – 3
-
C.
–xy + 3
-
D.
–xy - 3
Đáp án : A
\(\begin{array}{l}\left( {xy + {y^2} - {x^2}{y^2} - 2} \right) + \left( {{x^2}{y^2} + 5 - {y^2}} \right)\\ = xy + {y^2} - {x^2}{y^2} - 2 + {x^2}{y^2} + 5 - {y^2}\\ = \left( { - {x^2}{y^2} + {x^2}{y^2}} \right) + xy + \left( {{y^2} - {y^2}} \right) + \left( { - 2 + 5} \right)\\ = xy + 3\end{array}\)
Câu 10 :
Cho các đa thức
\(\begin{array}{l}A = 4{{{x}}^2} - 5{{x}}y + 3{y^2}\\B = 3{{{x}}^2} + 2{{x}}y + {y^2}\\C = - {x^2} + 3{{x}}y + 2{y^2}\end{array}\)
Tính A + B +C:
-
A.
\(7{{{x}}^2} + 6{y^2}\)
-
B.
\(5{{{x}}^2} + 5{y^2}\)
-
C.
\(6{{{x}}^2} + 6{y^2}\)
-
D.
\(6{{{x}}^2} - 6{y^2}\)
Đáp án : C
\(\begin{array}{l}A + B + C = (4{{{x}}^2} - 5{{x}}y + 3{y^2}) + (3{{{x}}^2} + 2{{x}}y + {y^2}) + ( - {x^2} + 3{{x}}y + 2{y^2})\\ = 4{{{x}}^2} - 5{{x}}y + 3{y^2} + 3{{{x}}^2} + 2{{x}}y + {y^2} - {x^2} + 3{{x}}y + 2{y^2}\\ = \left( {4{{{x}}^2} + 3{{{x}}^2} - {x^2}} \right) + \left( { - 5{{x}}y + 2{{x}}y + 3{{x}}y} \right) + \left( {3{y^2} + {y^2} + 2{y^2}} \right)\\ = 6{{{x}}^2} + 6{y^2}\end{array}\)
Câu 11 :
Cho đa thức
\(\begin{array}{l}A = 4{{{x}}^2} - 5{{x}}y + 3{y^2}\\B = 3{{{x}}^2} + 2{{x}}y + {y^2}\\C = - {x^2} + 3{{x}}y + 2{y^2}\end{array}\)
Tính A – B – C:
-
A.
\( - 10{{{x}}^2} + 2{{x}}y\)
-
B.
\( - 2{{{x}}^2} - 10{{x}}y\)
-
C.
\(2{{{x}}^2} + 10{{x}}y\)
-
D.
\(2{{{x}}^2} - 10{{x}}y\)
Đáp án : D
\(\begin{array}{l}A - B - C = \left( {4{{{x}}^2} - 5{{x}}y + 3{y^2}} \right) - \left( {3{{{x}}^2} + 2{{x}}y + {y^2}} \right) - \left( { - {x^2} + 3{{x}}y + 2{y^2}} \right)\\ = 4{{{x}}^2} - 5{{x}}y + 3{y^2} - 3{{{x}}^2} - 2{{x}}y - {y^2} + {x^2} - 3{{x}}y - 2{y^2}\\ = \left( {4{{{x}}^2} - 3{{{x}}^2} + {x^2}} \right) + \left( { - 5{{x}}y - 2{{x}}y - 3{{x}}y} \right) + \left( {3{y^2} - {y^2} - 2{y^2}} \right)\\ = 2{{{x}}^2} - 10{{x}}y\end{array}\)
Câu 12 :
Cho đa thức
\(\begin{array}{l}A = 4{{{x}}^2} - 5{{x}}y + 3{y^2}\\B = 3{{{x}}^2} + 2{{x}}y + {y^2}\\C = - {x^2} + 3{{x}}y + 2{y^2}\end{array}\)
Tính C – A – B:
-
A.
\(8{{{x}}^2} + 6{{x}}y + 2{y^2}\)
-
B.
\( - 8{{{x}}^2}{{ + 6x}}y - 2{y^2}\)
-
C.
\(8{{{x}}^2}{{ - 6x}}y - 2{y^2}\)
-
D.
\(8{{{x}}^2} - 6{{x}}y + 2{y^2}\)
Đáp án : B
\(\begin{array}{l}C - A - B = \left( { - {x^2} + 3{{x}}y + 2{y^2}} \right) - \left( {4{{{x}}^2} - 5{{x}}y + 3{y^2}} \right) - \left( {3{{{x}}^2} + 2{{x}}y + {y^2}} \right) \\ = - {x^2} + 3{{x}}y + 2{y^2} - 4{{{x}}^2} + 5{{x}}y - 3{y^2} - 3{{{x}}^2} - 2{{x}}y - {y^2} \\ = \left( { - 4{{{x}}^2} - 3{{{x}}^2} - {x^2}} \right) + \left( {5{{x}}y - 2{{x}}y + 3{{x}}y} \right) + \left( { - 3{y^2} - {y^2} + 2{y^2}} \right)\\ = - 8{{{x}}^2}{{ + 6x}}y - 2{y^2}\end{array}\)
Câu 13 :
Tìm đa thức M biết \(M + \left( {5{{{x}}^2} - 2{{x}}y} \right) = 6{{{x}}^2} + 10{{x}}y - {y^2}\)
-
A.
\(M = {x^2} + 12{{x}}y - {y^2}\)
-
B.
\(M = {x^2} - 12{{x}}y - {y^2}\)
-
C.
\(M = {x^2} + 12{{x}}y + {y^2}\)
-
D.
\(M = - {x^2} - 12{{x}}y - {y^2}\)
Đáp án : A
Áp dụng: \(M + A = B \) thì \(M = B - A\)
Ta có:
\(M + \left( {5{{{x}}^2} - 2{{x}}y} \right) = 6{{{x}}^2} + 10{{x}}y - {y^2}\)
suy ra \(M = 6{{{x}}^2} + 10{{x}}y - {y^2} - \left( {5{{{x}}^2} - 2{{xy}}} \right)\)
\(M = 6{{{x}}^2} + 10{{x}}y - {y^2} - {5{{{x}}^2} + 2{{xy}}}\)
\(M = \left( {6{{{x}}^2} - 5{{{x}}^2}} \right) + \left( {10{{x}}y + 2{{x}}y} \right) - {y^2}\)
\(M = {x^2} + 12{{x}}y - {y^2}\)
Câu 14 :
Tìm đa thức M biết: \(M - \left( {{{3x}}y - 4{y^2}} \right) = {{{x}}^2}{{ - 7x}}y + 8{y^2}\)
-
A.
\(M = {x^2}{{ - 4x}}y + 4{y^2}\)
-
B.
\(M = {x^2}{{ + 4x}}y + 4{y^2}\)
-
C.
\(M = - {x^2}{{ - 4x}}y + 4{y^2}\)
-
D.
\(M = {x^2} + 10{{x}}y + 4{y^2}\)
Đáp án : A
\(\begin{array}{l}M - \left( {{{3x}}y - 4{y^2}} \right) = {{{x}}^2}{{ - 7x}}y + 8{y^2}\\ \Rightarrow M = {x^2} - 7{{x}}y + 8{y^2} + \left( {3{{x}}y - 4{y^2}} \right)\\M = {x^2} + \left( { - 7{{x}}y + 3{{x}}y} \right) + \left( {8{y^2} - 4{y^2}} \right)\\ \Rightarrow M = {x^2} - 4{{x}}y + 4{y^2}\end{array}\)
Câu 15 :
Tính giá trị của đa thức
\(C = xy + {x^2}{y^2} + {x^3}{y^3} + ...... + {x^{100}}{y^{100}}\) tại x = -1; y = -1
-
A.
-100
-
B.
100
-
C.
0
-
D.
50
Đáp án : B
\(\begin{array}{l}C = ( - 1)\left( { - 1} \right) + {\left( { - 1} \right)^2}{\left( { - 1} \right)^2} + {\left( { - 1} \right)^3}{\left( { - 1} \right)^3} + ........... + {\left( { - 1} \right)^{100}}{\left( { - 1} \right)^{100}}\\C = 1 + 1 + 1 + ..... + 1 = 100\end{array}\)
Câu 16 :
Tính giá trị của đa thức
\(N = {x^3} + {x^2}y - 2{{{x}}^2} - xy - {y^2} + 3y + x - 1\) biết x + y – 2 = 0
-
A.
-1
-
B.
0
-
C.
2
-
D.
1
Đáp án : D
\(\begin{array}{l}N = {x^3} + {x^2}y - 2{{{x}}^2} - xy - {y^2} + 3y + x - 1\\ = \left( {{x^3} + {x^2}y - 2{{{x}}^2}} \right) + \left( { - xy - {y^2} + 2y} \right) + y + x - 1\\ = {x^2}\left( {x + y - 2} \right) - y\left( {x + y - 2} \right) + \left( {x + y - 2} \right) + 1\\ = {x^2}.0 - y.0 + 0 + 1 = 1\end{array}\)
Câu 17 :
Cho
\(\begin{array}{l}M = x - (y - z) - 2{{x}} + y + z - (2 - x - y)\\N = x - \left[ {x - \left( {y - 2{{z}}} \right) - 2{{z}}} \right]\end{array}\)
Tính M – N
-
A.
-2z + 2
-
B.
-2x – 2y – 2
-
C.
2z – 2
-
D.
-2x + 2y - 2
Đáp án : C
Ta có:
\(\begin{array}{l}M = x - \left( {y - z} \right) - 2{{x}} + y + z - \left( {2 - x - y} \right)\\ = x - y + z - 2{{x}} + y + z - 2 + x + y\\ = y + 2{{z}} - 2\\N = x - \left[ {x - \left( {y - 2{{z}}} \right) - 2{{z}}} \right]\\ = x - \left( {x - y + 2{{z}} - 2{{z}}} \right) = x - x + y = y\\ \text{suy ra } M - N = y + 2{{z}} - 2 - y = 2{{z}} - 2\end{array}\)
Câu 18 :
Nếu 3(4x + 5y) = P thì 12(12x+15y) bằng
-
A.
12P
-
B.
36P
-
C.
4P
-
D.
20P
Đáp án : A
12(12x +15y) = 12(3.4x + 3.5y) = 12.3(4x +5y) = 12P
Câu 19 :
Bác Nam có một mảnh vườn hình chữ nhật có chiều dài là: \(2{y^2} + 12 + xy(m)\); chiều rộng là 2xy.(m). tính chu vi của khu vườn biết x = 4 và y = 4.
-
A.
184 m
-
B.
60m
-
C.
32m
-
D.
184\({m^2}\)
Đáp án : A
\(2.\left( {2{y^2} + 12 + xy + 2{{x}}y} \right) = 2.\left( {2{y^2} + 12 + 3{{x}}y} \right) = 4{y^2} + 24 + 6{{x}}y\)
Thay x = 4; y = 4 vào công thức chu vi ta được:
\({4.4^2} + 24 + 6.4.4 = 184m\)
Câu 20 :
Khu vườn trồng mía của nhà bác Minh ban đầu có dạng hình vuông biết chu vi hình vuông là 20(m) sau đó mở rộng bên phải thêm y(m) phía dưới thêm 8x(m) nên mảnh vườn trở thành hình chữ nhật. Tính chu vi của khu vườn sau khi được mở rộng theo x, y
-
A.
y +5
-
B.
8x + 5
-
C.
2y +16x + 20
-
D.
4x + 8y
Đáp án : C
Xác định chiều dài, chiều rộng của khu vườn sau khi được mở rộng. Tính chu vi của khu vườn sau khi mở rộng
Chiều rộng của khu vườn sau khi được mở rộng là: y +5 (m)
Chiều dài của khu vườn sau khi được mở rộng là: 8x + 5 (m)
Chu vi của khu vườn là: 2(y + 5 + 8x + 5) = 2.(y + 8x + 10) = 2y + 16x + 20 (m)
Câu 21 :
Một cửa hàng buổi sáng bán được: \(8{{{x}}^3}y + 5{{{x}}^6}{y^5} - 3{{{x}}^5}{y^4}\); buổi chiều bán được: \({x^6}{y^5} - {x^5}{y^4}\)(bao gạo). Tính số bao gạo mà của hàng bán được trong một ngày.
-
A.
\(8{{{x}}^3}y + 6{{{x}}^6}{y^5} - 4{{{x}}^5}{y^4}\)
-
B.
\(8{{{x}}^3}y + 6{{{x}}^6}{y^5}\)
-
C.
\(8{{{x}}^3}y + 5{{{x}}^6}{y^5} - 4{{{x}}^5}{y^4}\)
-
D.
\(6{{{x}}^6}{y^5} - 4{{{x}}^5}{y^4}\)
Đáp án : A
Cộng số bao gạo bán được của buổi sáng và buổi chiều rồi rút gọn.
\(\begin{array}{l}\left( {8{{{x}}^3}y + 5{{{x}}^6}{y^5} - 3{{{x}}^5}{y^4}} \right) + \left( {{x^6}{y^5} - {x^5}{y^4}} \right)\\ = 8{{{x}}^3}y + 6{{{x}}^6}{y^5} - 4{{{x}}^5}{y^4}\end{array}\)
Câu 22 :
Cho \(P = xyz + {x^2}{y^2}{z^2} + .... + {x^{2022}}{y^{2022}}{z^{2022}}\). Tính P biết: x = y = 1; z = -1.
-
A.
P = -2022
-
B.
P = 0
-
C.
P = 2022
-
D.
P = 1011
Đáp án : B
\(\begin{array}{l}P = 1.1\left( { - 1} \right) + {1^2}{.1^2}{\left( { - 1} \right)^2} + .... + {1^{2022}}{.1^{2022}}{\left( { - 1} \right)^{2022}}\\ = \left( { - 1} \right) + 1 + \left( { - 1} \right) + .... + \left( { - 1} \right) = 0\end{array}\)
Câu 23 :
Cho đa thức A = 3x – 1; B = 2y + 4x. Tính đa thức C = A + B khi x = 2y = 1.
-
A.
C = 8
-
B.
C = 7
-
C.
C = 9
-
D.
C = 10
Đáp án : B
Ta có: C = A + B = 3x – 1 +2y +4x = 7x + 2y - 1 với
\(x = 2y = 1 \Rightarrow \left\{ \begin{array}{l}x = 1\\2y = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 1\\y = \frac{1}{2}\end{array} \right.\) Thay \(x = 1;y = \frac{1}{2}\)vào C ta được:
\(C = 7.1 + 2.\frac{1}{2} - 1 = 7 + 1 - 1 = 7\)
Câu 24 :
Cho
\(\begin{array}{l}f\left( x \right) = {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1\\g\left( x \right) = - {x^{2n + 1}} + {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1\end{array}\)
Biết \(h\left( x \right) = f\left( x \right) - g\left( x \right)\). Tính \(h\left( {\frac{1}{{10}}} \right)\)
-
A.
\(h\left( {\frac{1}{{10}}} \right) = \frac{{ - 1}}{{{{10}^{2n + 1}}}}\)
-
B.
\(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n + 1}}}}\)
-
C.
\(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n - 1}}}}\)
-
D.
\(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n - 1}}}}\)
Đáp án : B
Thay \(x = \frac{1}{{10}}\)vào h(x)
\(\begin{array}{l}h\left( x \right) = f\left( x \right) - g\left( x \right)\\ = \left( {{x^{2n}} - {x^{2n - 1}} + ..... + {x^2} - x + 1} \right) - \left( { - {x^{2n + 1}} + {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1} \right)\\ = {x^{2n}} - {x^{2n - 1}} + ..... + {x^2} - x + 1 + {x^{2n + 1}} - {x^{2n}} + {x^{2n + 1}} - .... - {x^2} + x - 1\\ = {x^{2n + 1}} + \left( {{x^{2n}} - {x^{2n}}} \right) + \left( { - {x^{2n - 1}} + {x^{2n - 1}}} \right) + .... + \left( {{x^2} - {x^2}} \right) + \left( { - x + x} \right) + \left( {1 - 1} \right)\\ = {x^{2n + 1}}\end{array}\)
Thay \(x = \frac{1}{{10}}\)vào h(x) ta được:
\(h\left( {\frac{1}{{10}}} \right) = {\left( {\frac{1}{{10}}} \right)^{2n + 1}} = \frac{1}{{{{10}^{2n + 1}}}}\)
Một tấm bìa cứng hình chữ nhật có chiều dài là x + 43 (cm), chiều rộng x+30 (cm). Người ta cắt ở mỗi góc của tấm bìa hình vuông cạnh \({y^2} + 1\) và xếp phần còn lại thành một cái hộp không nắp.

Tính chiều dài của hình hộp chữ nhật.
-
A.
\(x + 2{y^2} + 41(cm)\)
-
B.
\({x^2} + 2{y^2}\left( {cm} \right)\)
-
C.
\(x - 2{y^2} + 41\left( {cm} \right)\)
-
D.
\(x - 2{y^2}\left( {cm} \right)\)
Đáp án: C
Chiều dài của hình hộp chữ nhật bằng chiều dài ban đầu trừ đi hai lần cạnh của hình vuông
Chiều dài của hình hộp chữ nhật là:
\(\left( {x + 43} \right) - \left( {{y^2} + 1} \right).2 = x - 2{y^2} + 41(cm)\)
Tính chiều rộng của hình hộp chữ nhật.
-
A.
\({x^2} - 2{y^2}(cm)\)
-
B.
\(x - 2{y^2} + 28\left( {cm} \right)\)
-
C.
\(x - {y^2}\left( {cm} \right)\)
-
D.
\(x + 28\left( {cm} \right)\)
Đáp án: B
Chiều rộng của hình hộp chữ nhật bằng chiều rộng ban đầu trừ đi hai lần cạnh của hình vuông.
Chiều rộng của hình hộp chữ nhật là:
\(\left( {x + 30} \right) - \left( {{y^2} + 1} \right).2 = x - 2{y^2} + 28(cm)\)
Luyện tập và củng cố kiến thức Bài 4: Phép nhân đa thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 5: Phép chia đa thức cho đơn thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 2: Đa thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết
Luyện tập và củng cố kiến thức Bài 1: Đơn thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Xem chi tiết