Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Văn học

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

by Tranducdoan
09/02/2026
in Văn học
0
Đánh giá bài viết

Bài viết Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển.

Mục Lục Bài Viết

  1. Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay
    1. A. Phương pháp giải
    2. B. Ví dụ minh họa
    3. C. Bài tập trắc nghiệm

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

A. Phương pháp giải

1. Công thức nhị thức Niu-tơn

Với a, b là các số thực và n là sô nguyên dương, ta có :

Công thức trên được gọi là công thức nhị thức Newton (viết tắt là Nhị thức Newton).

Quy ước: a0 = b0 = 1

Chú ý :

Trong biểu thức ở vế phải của công thức (1)

+ Số các hạng tử là n + 1.

+ Các hạng tử có số mũ của a giảm dần từ n đến 0, số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n.

+ Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

Hệ quả :

Các dạng khai triển cơ bản nhị thức Newton

2. Tam giác Pascal.

Tam giác Pascal được thiết lập theo quy luật sau :

– Đỉnh được ghi số 1. Tiếp theo là hàng thứ nhất ghi hai số 1.

– ¬Nếu biết hàng thứ n ( n≥1) thì hàng thứ n+1tiếp theo được thiết lập bằng cách cộng hai số liên tiếp của hàng thứ n rồi viết kết quả xuống hàng dưới ở vị trí giữa hai số này. Sau đó viết số 1 ở đầu và cuối hàng.

Nhận xét :

3. Mở rộng của khai triển nhị thức Niu- tơn

Bước 1:Viết tam giác Pascal đến dòng thứ nđể có được hệ số của nhị thức Niuton (b+ c)n

Bước 2: Ở các đầu dòng ta viết các đơn thức là khai triển nhị thức Newton

Bước 3: Nhân lần lượt các đơn thức ở đầu dòng mỗi cột với các đơn thức còn lại trên mỗi dòng đó rồi cộng các kết quả lại, ta thu được kết quả khai triển.

Cụ thể ta có ở dưới đây

Chú ý 1:

Chú ý 2:

B. Ví dụ minh họa

Ví dụ 1: Tính hệ số x10y8 trong khai triển ( x + y)18?

A.43758 B.23145 C.45 D.12458

Hướng dẫn giải :

Đáp án : A

Theo công thức nhị thức Niu- tơn; hệ số chứa x10.y8 là:

Ví dụ 2: Tìm hệ số của x4 trong khai triển ( 2x- 5)7

A.175000 B.-70000 C.70000 D.-175000

Hướng dẫn giải :

Đáp án : B

Ta có: (2x – 5)7 = [ (2x + (-5)]7

Theo công thức nhị thức Niu-tơn; số hạng chứa x4 là:

Do đó hệ số của x4 là:

Ví dụ 3: Trong khai triển nhị thức (x + 1)n+9. Có tất cả 17 số hạng. Vậy n bằng:

A.10 B.17 C.9 D.12

Hướng dẫn giải :

Đáp án : C

Chú ý: Số các số hạng của khai triển mũ n là n + 1.

Vậy khai triển (x+1)n+ 9 có tất cả 17 số hạng suy ra n + 9= 17 + 1.

⇔ n + 9= 18 nên n= 9

Ví dụ 4: Tìm hệ số chứa x9 trong khai triển

(1+x)9+(1+x)10+(1+x)11+(1+x)12+(1+x)13+(1+x)14+(1+x)15

Hướng dẫn giải :

Đáp án : B

+ Trong khai triển (1+x)9 thì số hạng chứa x9 là:

+ Tương tự hệ số chứa x9 trong các khai triển ( 1+x)10; ( 1+ x)11; ( 1+ x)12; …; ( 1+ x)15 là

Do đó; hệ số chứa x9 cần tìm là:

.

Ví dụ 5: Trong khai triển , hai số hạng cuối là:

.

Hướng dẫn giải :

Đáp án : A

Ta có:

là hai số hạng cuối cùng của khai triển

Ví dụ 6: Trong khai triển (2∛x+3√x )10,(x>0) số hạng chứa x4 sau khi khai triển là

A.1808640 B.1088640×4 C.1808460×4 D.207360

Hướng dẫn giải :

Đáp án : B

Ví dụ 7: Hệ số của số hạng chứa x9 trong khai triển (4/3-3×3)15 là

Hướng dẫn giải :

Đáp án : D

Ví dụ 8: Trong khai triển (1+ 3x)20 với số mũ tăng dần, hệ số của số hạng đứng chính giữa là:

Hướng dẫn giải :

Đáp án : D

Ví dụ 9: Nếu bốn số hạng đầu của một hàng trong tam giác Pascal được ghi lại là:

1 16 120 560

A. 1 32 360 1680

B. 1 18 123 564

C. 1 17 137 697

D. 1 17 136 680

Khi đó 4 số hạng đầu của hàng kế tiếp là:

Hướng dẫn giải :

Đáp án : D

4 số hạng tiếp theo của tam giác Pascal là:

1 1+16=17 16+120=126 120+560=680

Ví dụ 10: Tổng của số hạng thứ 4 trong khai triển (5a-1)5 và số hạng thứ 5 trong khai triển (2a- 3)6 là:

A.4160a2 B.-4160a2 C.4610a2 D.4620a2

Hướng dẫn giải :

Đáp án : C

Ví dụ 11: Hệ số của số hạng chứa x4 trong khai triển P(x)=(3×2 + x + 1)10 là :

A.1695 B.1485 C.405 D.360

Hướng dẫn giải :

Đáp án : A

Ví dụ 12: Tìm số hạng chứa x13 trong khai triển thành các đa thức của (x + x2 + x3 )10 là :

A.180 B.210 C.210×13 D. 180×3

Hướng dẫn giải :

Đáp án : C

+ Với 0≤q≤p≤10 thì số hạng tổng quát của khai triển (x+x2+x3)10 là:

Ví dụ 13: Tìm hệ số chứa x10 trong khai triển (1+ x+ x2 + x3)5

A.98 B.84 C.101 D.121

Hướng dẫn giải :

Đáp án : C

Theo khai triển nhị thức Niu-tơn, ta có:

C. Bài tập trắc nghiệm

Câu 1: Số hạng không chứa x trong khai triển là

Lời giải:

Đáp án : B

Ta có số hạng thứ k+ 1 là :

Số hạng không chứa x tương ứng với: (60-5k)/6=0

⇔ 60 – 5k= 0 ⇔ k= 12.

Do vậy số hạng cần tìm là:

Câu 2: Trong khai triển ( x – y)11, hệ số của số hạng chứa x8y3 là:

Lời giải:

Đáp án : A

Câu 3: Trong khai triển nhị thức (2+ x)6 xét các khẳng định sau:

I. Gồm có 7 số hạng.

II. Số hạng thứ 3 là 16x.

III. Hệ số của x5 là 12.

Trong các khẳng định trên

A. Chỉ I và III đúng

B. Chỉ II và III đúng

C. Chỉ I và II đúng

D. Cả ba đúng

Lời giải:

Đáp án : A

Câu 4: Có bao nhiêu số hạng hữu tỉ trong khai triển .

A.37 B.38 C.36 D.39

Lời giải:

Đáp án : B

⇒ k= 8t ( với t nguyên)

Lại có: 0≤k≤300 nên 0≤8t≤300

⇔ 0≤t≤37,5. Mà t nguyên nên t ∈ {0,1,2,3…, 37}.

Có 38 giá trị nguyên của t thỏa mãn. Suy ra có 38 giá trị của k thỏa mãn.

⇒ Có 38 số hạng hữu tỉ trong khai triển đã cho.

Câu 5: Tìm hệ số của x5 trong khai triển P(x) = ( x+1)6 +(x+ 1)7 + ( x+ 1)8 + ..+ (x+ 1)12 .

A.1711 B.1287 C.1716 D.1715

Lời giải:

Đáp án : D

Câu 6: Tìm hệ số chứa x12 trong khai triển ( 3x+ x2)10

A.145654 B.298645 C.295245 D.Đáp án khác

Lời giải:

Đáp án :

Theo khai triển nhị thức Niu-tơn, ta có số hạng thứ k+ 1 trong khai triển là:

Câu 7: Khai triển đa thức P(x) = (5x – 1)2003 ta được :

P(x)= a2003.x2003 + a2002.x2002 + …+ a1x+ a0.

Mệnh đề nào sau đây đúng?

Lời giải:

Đáp án : C

Câu 8: Tìm hệ số chứa x4 trong khai triển (2x+ 1/2x)10

A.1960 B.1920 C.1864 D.1680

Lời giải:

Đáp án : B

Câu 9: Tìm số hạng không chứa x trong khai triển: ( xy2- 1/xy)8

A.70y4 B.25y4 C.50y5 D.80y4

Lời giải:

Đáp án :

Theo khai triển nhị thức Niu-tơn, ta có:

Số hạng không chứa x ứng với: 8 – 2k=0 ⇔ k= 4

⇒ số hạng cần tìm

Câu 10: Tìm số hạng đứng vị trí chính giữa trong khai triển: ( x2+ xy)20

Lời giải:

Đáp án : D

Theo khai triển nhị thức Niu-tơn, ta có:

Câu 11: Khai triển đa thức: P(x)= ( 2 x- 1)1000 ta được:

P(x)= a1000x1000 + a999x999+ ….+ a1x+ a0 .Tính a1000 + a999 + …+ a1 + a0 ?

A.-1 B.0 C.2 D.1

Lời giải:

Đáp án : D

Ta có: (x) = a1000x1000 + a999x999+ ….+ a1x+ a0

Cho x = 1 ta được P(1) = a1000 + a999 + a998 + …+ a1+ a0 (1)

Mặt khác: P(x) = ( 2x-1)1000 nên P(1)= (2.1 – 1)1000 = 1 (2)

Từ (1) và (2) suy ra: a1000 + a999 + a998 + …+ a1+ a0 = 1

Câu 12: Tìm hệ số của x5 trong khai triển P(x) = x.(2+ x)5 + x2( 1 + x )10

A.110 B.120 C.130 D.140

Lời giải:

Đáp án : C

Câu 13: Số hạng không chứa x trong khai triển (x2 + 1/x – 1)10 là

A.1951 B.1950 C.3150 D.-360

Lời giải:

Đáp án : A

Câu 14: Số hạng chứa x8 trong khai triển (x3 – x2 -1)8 là

A.168×8 B.168 C.238×8 D.238

Lời giải:

Đáp án : D

Câu 15: Tìm hệ số của x5 trong khai triển P(x)= (1+ x)+ 2(1+x)2 + …+ 8(1+x)8

A.487 B.636 C.742 D.568

Lời giải:

Đáp án : B

Các biểu thức ( 1 + x ) ; 2( 1 + x )2 ; 3(1+x)3 ; 4(1+ x)4 không chứa số hạng chứa x5

Hệ số của số hạng chứa x5 trong khai triển 5(1+x)5 là

Hệ số của số hạng chứa x5 trong khai triển 6(1+x)6 là

Hệ số của số hạng chứa x5 trong khai triển 7(1+x)7 là

Hệ số của số hạng chứa x5 trong khai triển 8(1+ x)8 là

Vậy hệ số của x5 trong khai triển P(x) là :

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

  • Cách giải bài toán đếm số sử dụng Tổ hợp (cực hay có lời giải)
  • Cách giải bài toán đếm hình sử dụng Tổ hợp (cực hay có lời giải)
  • Tìm số hạng chứa x^a trong khai triển đa thức P (cực hay có lời giải)
  • Cách tìm hệ số lớn nhất trong khai triển (cực hay có lời giải)
  • Bài tập về nhị thức Newton nâng cao (cực hay có lời giải)
  • Cách xác định phép thử, không gian mẫu (cực hay có lời giải)
  • Cách tìm xác suất của biến cố (cực hay có lời giải)
  • Cách tính xác suất bài toán liên quan đến đếm số (cực hay có lời giải)
Previous Post

Đầy đủ toàn bộ lý thuyết và bài tập Momen lực Vật lý lớp 10

Next Post

Điểm chuẩn dự kiến vào lớp 10 chuyên Lam Sơn tăng vọt so với năm trước

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Đầy đủ toàn bộ lý thuyết và bài tập Momen lực Vật lý lớp 10

by Tranducdoan
09/02/2026
0
0

1. Momen lực là gì? 1.1 Thí nghiệm cân bằng của một vật sẽ có trục quay cố định -...

Vitamin nào tan trong nước và tan trong chất béo?

by Tranducdoan
09/02/2026
0
0

Các vitamin tan trong chất béo được hấp thụ cùng với chất béo trong chế độ ăn và được lưu...

Đề số 2 – Đề kiểm tra học kì 1 (Đề thi học kì 1) – Tiếng Việt 5

by Tranducdoan
09/02/2026
0
0

Đề bài A. PHẦN I: KIỂM TRA ĐỌC (10 ĐIỂM) I/ Đọc thành tiếng (4 điểm) GV cho HS bốc...

Phần mềm miễn phí

by Tranducdoan
09/02/2026
0
0

Phần mềm miễn phí (tiếng Anh: freeware) là phần mềm mà người sử dụng không phải trả bất kỳ chi...

Load More
Next Post

Điểm chuẩn dự kiến vào lớp 10 chuyên Lam Sơn tăng vọt so với năm trước

Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88 sàn forex uy tín 789bet
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.