Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Cách giải các dạng hệ phương trình đặc biệt (cực hay, chi tiết)

by Tranducdoan
31/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Bài viết Cách giải các dạng hệ phương trình đặc biệt với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải các dạng hệ phương trình đặc biệt.

Mục Lục Bài Viết

  1. Cách giải các dạng hệ phương trình đặc biệt (cực hay, chi tiết)
    1. Lý thuyết & Phương pháp giải
    2. Ví dụ minh họa
    3. Bài tập tự luyện

Cách giải các dạng hệ phương trình đặc biệt (cực hay, chi tiết)

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Lý thuyết & Phương pháp giải

DẠNG TOÁN 1: HỆ GỒM MỘT PHƯƠNG TRÌNH BẬC NHẤT VÀ MỘT BẬC HAI

1. Phương pháp giải

Sử dụng phương pháp thế

– Từ phương trình bậc nhất rút một ẩn theo ẩn kia.

– Thế vào phương trình bậc hai để đưa về phương trình bậc hai một ẩn.

– Số nghiệm của hệ tuỳ theo số nghiệm của phương trình bậc hai này.

DẠNG TOÁN 2: HỆ PHƯƠNG TRÌNH ĐỐI XỨNG

1. Phương pháp giải

a. Hệ đối xứng loại 1

Hệ phương trình đối xứng loại 1 là hệ phương trình có dạng:

(Có nghĩa là khi ta hoán vị giữa x và y thì f(x, y) và g(x, y) không thay đổi).

Cách giải

– Đặt S = x + y, P = xy

– Đưa hệ phương trình (I) về hệ (I’) với các ẩn là S và P.

– Giải hệ (I’) ta tìm được S và P

– Tìm nghiệm (x; y) bằng cách giải phương trình: X2 – SX + P = 0

b. Hệ đối xứng loại 2

Hệ phương trình đối xứng loại 2 là hệ phương trình có dạng:

(Có nghĩa là khi hoán vị giữa x và y thì (1) biến thành (2) và ngược lại)

– Trừ (1) và (2) vế theo vế ta được: (II) ⇔

– Biến đổi (3) về phương trình tích: (3) ⇔ (x-y).g(x,y) = 0 ⇔

– Như vậy (II) ⇔

– Giải các hệ phương trình trên ta tìm được nghiệm của hệ (II)

c. Chú ý: Hệ phương trình đối xứng loại 1, 2 nếu có nghiệm là (x0; y0) thì (y0; x0) cũng là một nghiệm của nó

DẠNG TOÁN 3: HỆ PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI

1. Phương pháp giải

Hệ phương trình đẳng cấp bậc hai là hệ phương trình có dạng:

– Giải hệ khi x = 0 (hoặc y = 0)

– Khi x ≠ 0, đặt y = tx. Thế vào hệ (I) ta được hệ theo k và x. Khử x ta tìm được phương trình bậc hai theo k. Giải phương trình này ta tìm được k, từ đó tìm được (x; y)

Ví dụ minh họa

Bài 1: Giải hệ phương trình

Lời giải:

a. Đặt S = x + y, P = xy (S2 – 4P ≥ 0)

Ta có :

⇒S2 – 2(5-S) = 5 ⇒ S2 + 2S – 15 = 0

⇒ S = -5; S = 3

S = -5⇒ P = 10 (loại)

S = 3⇒ P = 2(nhận)

Khi đó : x, y là nghiệm của phương trình X2 – 3X + 2 = 0

⇔ X = 1; X = 2

Vậy hệ có nghiệm (2; 1), (1; 2)

b. ĐKXĐ: x ≠ 0

Hệ phương trình tương đương với

Vậy hệ phương trình có nghiệm (x; y) là (1; 1) và (2; -3/2)

Bài 2: Giải hệ phương trình

Lời giải:

a. Hệ phương trình tương đương

Với x-y = 4 ⇒ x = y + 4 ⇒ y(y+4) + y + 4 – y = -1

⇔ y2 + 4y + 5 = 0 (vn)

Vậy nghiệm của hệ phương trình là (x; y) = {(0; 1), (-1; 0)}

b. Đặt S = x+y; P = xy, ta có hệ:

– Với S = 2 + √2; P = 2√2 ta có x, y là nghiệm phương trình:

Với S = -4-√2; P = 6 + 4√2 ta có x, y là nghiệm phương trình:

X2 + (4+√2)X + 6 + 4√2 = 0 (vô nghiệm)

Vậy hệ có nghiệm (x; y) là (2; √2) và (√2; 2)

Bài 3: Giải hệ phương trình

Lời giải:

a. Hệ phương trình tương đương

Vậy tập nghiệm của hệ phương trình là: (x; y) = {(0;0), (2;2)}

b. Trừ vế với vế của phương trình đầu và phương trình thứ hai ta được:

(y2 – x2 = x3 – y3 – 3(x2 – y2) + 2(x-y) ⇔ (x-y)(x2 + xy + y2 – 2x – 2y + 2) = 0 ⇔ 1/2(x-y)[x2 + y2 + (x + y – 2)2] = 0 ⇔ x = y)

(vì x2 + y2 + (x+y-2)2 > 0)

Thay x = y vào phương trình đầu ta được:

x3 – 4×2 + 2x = 0 ⇔ x(x2 – 4x + 2) = 0

Vậy hệ phương trình có ba nghiệm: (0; 0); (2+√2; 2+√2) và (2-√2; 2-√2)

Bài 4: Giải hệ phương trình

Lời giải:

a. Ta có : x3 – 3x = y3 – 3y ⇔ (x-y)(x2 + xy + y2) – 3(x-y) = 0

⇔ (x-y)(x2 + xy + y2 – 3) = 0

Khi x = y thì hệ có nghiệm

Khi x2 + xy + y2 – 3 = 0 ⇔ x2 + y2 = 3 – xy, ta có x6 + y6 = 27

⇔ (x2 + y2)(x4 – x2y2 + y4) = 27

⇒ (3-xy)[(3-xy)2 – 3x2y2] = 27 ⇔ 3(xy)3 + 27xy = 0

Vậy hệ phương trình đã cho có 2 nghiệm

b. Hệ phương trình tương đương

Bài 5: Giải hệ phương trình

Lời giải:

a. Ta có

Nếu x = 0 thay vào (1)⇒ y = 0, thay vào (2) thấy (x; y) = (0; 0) là nghiệm

của phương trình (2) nên không phải là nghiệm của hệ phương trình

Nếu x ≠ 0, đặt y = tx , thay vào hệ ta được

Với t = 1/2 thay vào (**) ta được 4×2 + x2 + 6x = 27 ⇔ 5×2 + 6x – 27 = 0

Với t = 1/3 thay vào (**) ta được 4×2 + (2/3)x2 + 6x = 27

⇔ 14×2 + 18x – 81 = 0

Vậy hệ phương trình có nghiệm (x; y) là:

b. Dễ thấy x = 0 không thoả hệ

Với x ≠ 0, đặt y = tx, thay vào hệ ta được

Suy ra 3(t2 – t + 1) = 2t2 – 3t + 4 ⇒ t = ±1

Thay vào (*) thì

Vậy hệ phương trình có nghiệm (x; y) là (1/√3;(-1)/√3), ((-1)/√3;1/√3), (-1;-1) và (1;1)

Bài 6: Cho hệ phương trình. Tìm giá trị thích hợp của tham số a sao cho hệ có nghiệm (x; y) và tích x.y nhỏ nhất.

Lời giải:

Đặt S = x + y, P = xy (S2 – 4P ≥ 0)

Ta có

Đẳng thức xảy ra khi a = -1 (nhận)

Bài 7: Xác định m để hệ phương trìnhcó nghiệm

Lời giải:

Hệ phương trình tương đương

(x2 + y2 – 2xy) – (x + y – 4xy) = m + 1 – 2m ⇔ (x+y)2 – (x+y) + m – 1 = 0

Để hệ phương trình có nghiệm Δ ≥ 0 ⇔ 1 – 4(m-1) ≥ 0 ⇔ 5 – 4m ≥ 0

⇔ m ≤ 5/4

Từ phương trình thứ 2 ta có(x-y)2 = m + 1 ⇒ m + 1 ≥ 0 ⇔ m ≥ -1

Do đó -1 ≤ m ≤ 5/4

Bài tập tự luyện

Bài 1. Giải hệ phương trình 5x+y=6x−5y=−6.

Bài 2. Giải hệ phương trình 2×2+2x−y−1=3×2+x+2y−1=4.

Bài 3. Giải hệ phương trình 2x−3x−2+y+7y+3=5x+1x−2+3y+1y+3=5.

Bài 4. Giải hệ phương trình x+y=1y−x=1.

Bài 5. Giải hệ phương trình −x+5y+z=22x−9y+2z=83x−4y+z=5.

Bài 6. Giải hệ phương trình 5x+y=6x−5y=−6.

Bài 7. Giải hệ phương trình 2×2+2x−y−1=3×2+x+2y−1=4.

Bài 8. Giải hệ phương trình 2x−3x−2+y+7y+3=5x+1x−2+3y+1y+3=5.

Bài 9. Giải hệ phương trình x+y=1y−x=1.

Bài 10. Giải hệ phương trình −x+5y+z=22x−9y+2z=83x−4y+z=5.

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

  • Các dạng phương trình quy về phương trình bậc hai
  • Bài tập phương trình quy về phương trình bậc hai
  • Giải và biện luận hệ phương trình bậc nhất
  • Bài tập giải và biện luận hệ phương trình bậc nhất

Để học tốt lớp 10 các môn học sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
Previous Post

Mê muội tâm linh

Next Post

Cách chứng minh 3 điểm thẳng hàng

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Chuyên đề phương trinh nghiệm nguyên (bản word đầy đủ mất phí) Tác giả / Nguồn: Sưu tầm

by Tranducdoan
31/01/2026
0
0

Chuyên đề phương trinh nghiệm nguyên Cuốn sách “Phương trình nghiệm nguyên” này giúp các em học sinh THCS có...

Sáng kiến kinh nghiệm Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

by Tranducdoan
31/01/2026
0
0

3. Mô tả bản chất của sáng kiến:3.1. Tình trạng giải pháp đã biết: Sau nhiều năm trực tiếp giảng...

Rút gọn biểu thức (cách giải + bài tập)

by Tranducdoan
31/01/2026
0
0

Chuyên đề phương pháp giải bài tập Rút gọn biểu thức lớp 7 chương trình sách mới hay, chi tiết...

Giải các bài toán thực tế về Cấp số cộng lớp 11 (cách giải + bài tập)

by Tranducdoan
31/01/2026
0
0

Chuyên đề phương pháp giải bài tập Giải các bài toán thực tế về Cấp số cộng lớp 11 chương...

Load More
Next Post

Cách chứng minh 3 điểm thẳng hàng

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

TOUR ROUTE 66 CON ĐƯỜNG HUYỀN THOẠI NƯỚC MỸ 8 TIỂU BANG JUN 28 – JULY 5, 2026

31/01/2026

Well-nessChữ Với Nghĩa: Xu cà na

31/01/2026

7 hiểu lầm thường gặp về Chủ nghĩa tối giản

31/01/2026
Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp 789bet https://pihu.in.net/ 68vip Ca Khia TV trực tiếp XoilacTV go 88
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.