Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home chính tả

Cách tính nhanh đạo hàm

by Tranducdoan
20/12/2025
in chính tả
0
Đánh giá bài viết

Bài tập Đạo hàm Toán lớp 11 vừa được VnDoc.com sưu tầm và xin gửi tới bạn đọc để bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.

Mục Lục Bài Viết

  1. A. Đạo hàm của hàm phân thức
  2. B. Đạo hàm của hàm phân thức bậc 1/ bậc 1
  3. C. Đạo hàm của hàm phân thức bậc 2/ bậc 1
  4. D. Đạo hàm của hàm phân thức bậc 2/ bậc 2
  5. E. Công thức tính nhanh đạo hàm của một số hàm số thường gặp
  6. F. Bài tập tính đạo hàm

A. Đạo hàm của hàm phân thức

Để tính đạo hàm phân thức ta sử dụng chung một công thức

(left( {frac{u}{v}} right)’ = frac{{u’.v – v’.u}}{{{v^2}}})

Công thức đặc biệt: (left( {frac{1}{x}} right)’ = frac{{ – 1}}{{{x^2}}};left( {frac{1}{u}} right)’ = – frac{{u’}}{{{u^2}}})

B. Đạo hàm của hàm phân thức bậc 1/ bậc 1

(y = frac{{ax + b}}{{cx + d}} Rightarrow y’ = frac{{ad – bc}}{{{{left( {cx + d} right)}^2}}})

Ví dụ: Tính đạo hàm của hàm số:

a. (y = frac{{3x – 2}}{{x – 1}}) b. (y = frac{{x + 5}}{{2x + 3}})

Hướng dẫn giải

a. (y’ = frac{{3.left( { – 1} right) – left( { – 2} right).1}}{{{{left( {x – 1} right)}^2}}} = frac{{ – 1}}{{{{left( {x – 1} right)}^2}}})

b. (y’ = frac{{1.3 – 5.2}}{{{{left( {2x + 3} right)}^2}}} = frac{{ – 7}}{{{{left( {2x + 3} right)}^2}}})

C. Đạo hàm của hàm phân thức bậc 2/ bậc 1

(y = frac{{a{x^2} + bx + c}}{{dx + e}} Rightarrow y’ = frac{{ad{x^2} + 2aex + be – cd}}{{{{left( {dx + e} right)}^2}}})

Ví dụ: Tính đạo hàm của hàm số (y = frac{{3{x^2} – 2x + 1}}{{x + 2}})

Hướng dẫn giải

(y = frac{{3{x^2} – 2x + 1}}{{x + 2}} Rightarrow y’ = frac{{3.1{x^2} + 2.3.2x + left( { – 2} right).2 – 1.1}}{{{{left( {x + 2} right)}^2}}} = frac{{3{x^2} + 12x – 5}}{{{{left( {x + 2} right)}^2}}})

D. Đạo hàm của hàm phân thức bậc 2/ bậc 2

(begin{matrix} y = dfrac{{{a_1}{x^2} + {b_1}x + {c_1}}}{{{a_2}{x^2} + {b_2}x + {c_2}}} Rightarrow y’ = dfrac{{left| {begin{array}{*{20}{c}} {{a_1}}&{{b_1}} {{a_2}}&{{b_2}} end{array}} right|{x^2} + 2left| {begin{array}{*{20}{c}} {{a_1}}&{{c_1}} {{a_2}}&{{c_2}} end{array}} right|x + left| {begin{array}{*{20}{c}} {{b_1}}&{{c_1}} {{b_2}}&{{c_2}} end{array}} right|}}{{{{left( {{a_2}{x^2} + {b_2}x + {c_2}} right)}^2}}} hfill Rightarrow y’ = dfrac{{left( {{a_1}{b_2} – {a_2}{b_1}} right){x^2} + 2left( {{a_1}{c_2} – {a_2}{c_1}} right)x + {b_1}{c_2} – {b_2}{c_1}}}{{{{left( {{a_2}{x^2} + {b_2}x + {c_2}} right)}^2}}} hfill end{matrix})

Ví dụ: Tính đạo hàm của hàm số (y = frac{{3{x^2} – 2x + 1}}{{{x^2} + x + 2}})

Hướng dẫn giải

(y = frac{{3{x^2} – 2x + 1}}{{{x^2} + x + 2}} Rightarrow y’ = frac{{left| {begin{array}{*{20}{c}} 3&{ – 2} 1&1 end{array}} right| + 2left| {begin{array}{*{20}{c}} 3&1 1&2 end{array}} right|x + left| {begin{array}{*{20}{c}} { – 2}&1 1&2 end{array}} right|}}{{{{left( {{x^2} + x + 2} right)}^2}}} = frac{{5{x^2} + 10x – 5}}{{{{left( {{x^2} + x + 2} right)}^2}}})

E. Công thức tính nhanh đạo hàm của một số hàm số thường gặp

Hàm số bậc nhất/bậc nhất: f(x)=ax+b/cx+d⇒f′(x)=ad−bc/(cx+d)2.

Hàm số bậc hai/bậc nhất: f(x)=ax2+bx+c/mx+n⇒f(x)=amx2+2anx+bn−cm/(mx+n)2

Hàm số đa thức bậc ba: f(x)=ax3+bx2+cx+d⇒f(x)=3ax2+2bx+c

Hàm số trùng phương: f(x)=ax4+bx2+c⇒f′(x)=4ax3+2bx.

Hàm số chứa căn bậc hai: f(x)=√u(x)⇒f′(x)=u′(x)/2√u(x)

Hàm số chứa trị tuyệt đối: f(x)=|u(x)|⇒f′(x)=u′(x).u(x)/|u(x)|.

F. Bài tập tính đạo hàm

Câu 1. Tìm (m) để các hàm số (y = (m – 1)x^{3} – 3(m + 2)x^{2} – 6(m + 2)x + 1) có (y’ geq 0, forall xmathbb{in R})?

A. (m geq 3) B. (m geq 1) C. (m geq 4) D. (m geq 4sqrt{2})

Lời giải

Chọn C

Ta có: (y’ = 3leftlbrack (m – 1)x^{2} – 2(m + 2)x – 2(m + 2) rightrbrack)

Do đó (y’ geq 0 Leftrightarrow (m – 1)x^{2} – 2(m + 2)x – 2(m + 2) geq 0)

(m = 1) thì (Leftrightarrow – 6x – 6 geq 0 Leftrightarrow x leq – 1) nên (m = 1)

(m neq 1) thì đúng với (forall xmathbb{in R Leftrightarrow}left{ begin{matrix} a = m – 1 > 0 Delta’ leq 0 end{matrix} right.)

(Leftrightarrow left{ begin{matrix} m > 1 (m + 1)(4 – m) leq 0 end{matrix} right. Leftrightarrow m geq 4)

Vậy (m geq 4) là những giá trị cần tìm.

Câu 2. Tìm (m) để các hàm số (y = frac{mx^{3}}{3} – mx^{2} + (3m – 1)x + 1) có (y’ leq 0, forall xmathbb{in R}).

A. (m leq sqrt{2}) B. (m leq 2) C. (m leq 0) D. (m < 0)

Lời giải

Chọn C

Ta có: (y’ = mx^{2} – 2mx + 3m – 1)

Nên (y’ leq 0 Leftrightarrow mx^{2} – 2mx + 3m – 1 leq 0)

(m = 0) thì trở thành: (- 1 leq 0) đúng với (forall xmathbb{in R})

(m neq 0), khi đó đúng với (forall xmathbb{in R Leftrightarrow}left{ begin{matrix} a = m < 0 Delta’ leq 0 end{matrix} right.)

(Leftrightarrow left{ begin{matrix} m < 0 m(1 – 2m) leq 0 end{matrix} right. Leftrightarrow left{ begin{matrix} m < 0 1 – 2m geq 0 end{matrix} right. Leftrightarrow m < 0)

Vậy (m leq 0) là những giá trị cần tìm.

Câu 3. Giải bất phương trình (2xf'(x) – f(x) geq 0) với (f(x) = x + sqrt{x^{2} + 1}).

A. (mathbf{x geq}frac{mathbf{1}}{sqrt{mathbf{3}}}) B. (mathbf{x >}frac{mathbf{1}}{sqrt{mathbf{3}}}) C. (mathbf{x <}frac{mathbf{1}}{sqrt{mathbf{3}}}) D. (mathbf{x geq}frac{mathbf{2}}{sqrt{mathbf{3}}})

Lời giải

Chọn A

TXĐ: (Dmathbb{= R})

Ta có: (f'(x) = 1 + frac{x}{sqrt{x^{2} + 1}} = frac{f(x)}{sqrt{x^{2} + 1}})

Mặt khác: (f(x) > x + sqrt{x^{2}} = x + |x| geq 0, forall xmathbb{in R})

Nên (2xf'(x) – f(x) geq 0 Leftrightarrow frac{2xf(x)}{sqrt{x^{2} + 1}} – f(x) geq 0)

(Leftrightarrow 2x geq sqrt{x^{2} + 1} Leftrightarrow left{ begin{matrix} x geq 0 3x^{2} geq 1 end{matrix} right. Leftrightarrow x geq frac{1}{sqrt{3}}).

Câu 4. Cho hai hàm số (f(x)) và (g(x)) đều có đạo hàm trên (mathbb{R}) và thỏa mãn:

(f^{3}(2 – x) – 2f^{2}(2 + 3x) + x^{2}.g(x) + 36x = 0), với (forall xmathbb{in R}). Tính (A = 3f(2) + 4f'(2)).

A. (11) B. (13) C. (14) D. (10)

Lời giải

Chọn D

Với (forall xmathbb{in R}), ta có (f^{3}(2 – x) – 2f^{2}(2 + 3x) + x^{2}.g(x) + 36x = 0) ((1)).

Đạo hàm hai vế của ((1)), ta được

(- 3f^{2}(2 – x).f'(2 – x) – 12f(2 + 3x).f'(2 + 3x) + 2x.g(x) + x^{2}.g'(x) + 36 = 0) ((2)).

Từ ((1)) và ((2)), thay (x = 0), ta có (left{ begin{matrix} f^{3}(2) – 2f^{2}(2) = 0 (3) – 3f^{2}(2).f'(2) – 12f(2).f'(2) + 36 = 0 (4) end{matrix} right.)

Từ ((3)), ta có (f(2) = 0 vee f(2) = 2).

Với (f(2) = 0), thế vào ((4)) ta được (36 = 0).

Với (f(2) = 2), thế vào ((4)) ta được (- 36.f'(2) + 36 = 0 Leftrightarrow f'(2) = 1).

Vậy (A = 3f(2) + 4f'(2) = 3.2 + 4.1 = 10).

Câu 5. Cho hàm số (f(x) = frac{1 – 3x + x^{2}}{x – 1}). Tập nghiệm của bất phương trình (f'(x) > 0) là

A. (mathbb{R}backslashleft{ 1 right}) B. (varnothing) C. ((1; + infty)) D. (mathbb{R})

Lời giải

Chọn A

(begin{matrix} f'(x) = left( frac{1 – 3x + x^{2}}{x – 1} right)^{‘} = frac{left( 1 – 3x + x^{2} right)^{‘}(x – 1) – left( 1 – 3x + x^{2} right)(x – 1)^{‘}}{(x – 1)^{2}} = frac{( – 3 + 2x)(x – 1) – left( 1 – 3x + x^{2} right)}{(x – 1)^{2}} = frac{x^{2} – 2x + 2}{(x – 1)^{2}} = frac{(x – 1)^{2} + 1}{(x – 1)^{2}} > 0, forall x neq 1 end{matrix})

Câu 6. Cho hàm số (y = f(x) = left( 1 – 2x^{2} right)sqrt{1 + 2x^{2}}). Ta xét hai mệnh đề sau:

((I)) (f'(x) = frac{- 2xleft( 1 + 6x^{2} right)}{sqrt{1 + 2x^{2}}}) ((II)) (f(x).f'(x) = 2xleft( 12x^{4} – 4x^{2} – 1 right))

Mệnh đề nào đúng?

A. Chỉ ((II)) B. Chỉ ((I)) C. Cả hai đều sai. D. Cả hai đều đúng.

Lời giải

Chọn D

Ta có

(f'(x) = left( 1 – 2x^{2} right)^{‘}sqrt{1 + 2x^{2}} + left( 1 – 2x^{2} right)left( sqrt{1 + 2x^{2}} right)^{‘})

(= – 4xsqrt{1 + 2x^{2}} + left( 1 – 2x^{2} right)frac{2x}{sqrt{1 + 2x^{2}}})

(= frac{- 4xleft( 1 + 2x^{2} right) + left( 1 – 2x^{2} right).2x}{sqrt{1 + 2x^{2}}})

(= frac{- 2x – 12x^{3}}{sqrt{1 + 2x^{2}}} = frac{- 2xleft( 1 + 6x^{2} right)}{sqrt{1 + 2x^{2}}})

Suy ra

(f(x).f'(x) = left( 1 – 2x^{2} right)sqrt{1 + 2x^{2}}.frac{- 2xleft( 1 + 6x^{2} right)}{sqrt{1 + 2x^{2}}})

(= – 2xleft( 1 – 2x^{2} right)left( 1 + 6x^{2} right))

( = – 2xleft( – 12x^{4} + 4x^{2} + 1 right) = 2xleft( 12x^{4} – 4x^{2} – 1 right))

Câu 7. Tính đạo hàm của hàm số sau tại điểm chỉ ra (mathbf{f}mathbf{(}mathbf{x}mathbf{)}mathbf{=}frac{mathbf{x}^{mathbf{2}}mathbf{+ x +}left| mathbf{x +}mathbf{1} right|}{mathbf{x}}) tại (x_{0} = – 1).

Lời giải

Ta có hàm số liên tục tại (x_{0} = – 1) và

(frac{f(x) – f( – 1)}{x + 1} = frac{x^{2} + x + |x + 1|}{x(x + 1)})

Nên (lim_{x rightarrow – 1^{+}}frac{f(x) – f( – 1)}{x + 1} = lim_{x rightarrow – 1^{+}}frac{x^{2} + 2x + 1}{x(x + 1)} = 0)

(lim_{x rightarrow – 1^{-}}frac{f(x) – f( – 1)}{x + 1} = lim_{x rightarrow – 1^{-}}frac{x^{2} – 1}{x(x + 1)} = 2)

Do đó (lim_{x rightarrow – 1^{+}}frac{f(x) – f( – 1)}{x + 1} neq lim_{x rightarrow – 1^{-}}frac{f(x) – f( – 1)}{x + 1})

Vậy hàm số không có đạo hàm tại điểm (x_{0} = – 1).

Nhận xét: Hàm số (y = f(x)) có đạo hàm tại (x = x_{0}) thì phải liên tục tại điểm đó.

Câu 8. Cho hàm số (f(x) = left{ begin{matrix} x^{2} khi x leq 2 – frac{x^{2}}{2} + bx – 6 khi x > 2 end{matrix} right.). Để hàm số này có đạo hàm tại (x = 2) thì giá trị của b bằng bao nhiêu?

Lời giải

Ta có:

(f(2) = 4), (lim_{x rightarrow 2^{-}}f(x) = lim_{x rightarrow 2^{-}}x^{2} = 4), (lim_{x rightarrow 2^{-}}f(x) = lim_{x rightarrow 2^{-}}left( – frac{x^{2}}{2} + bx – 6 right) = 2b – 8).

(f(x)) có đạo hàm tại (x = 2) khi và chỉ khi (f(x)) liên tục tại (x = 2)

(Leftrightarrow lim_{x rightarrow 2^{-}}f(x) = lim_{x rightarrow 2^{-}}f(x) = f(2) Leftrightarrow 2b – 8 = 4 Leftrightarrow b = 6).

Câu 9. Cho hàm số (f(x) = left{ begin{matrix} asqrt{x} khi 0 < x < x_{0} x^{2} + 12 khi x geq x_{0} end{matrix} right.). Biết rằng ta luôn tìm được một số dương (x_{0}) và một số thực (a) để hàm số (f) có đạo hàm liên tục trên khoảng (left( 0;x_{o} right) cup left( x_{o}; + infty right)). Tính giá trị (S = x_{0} + a).

Lời giải

Chọn B

+ Khi (0 < x < x_{0}): (f(x) = asqrt{x}) (Rightarrow f'(x) = frac{a}{2sqrt{x}}).

Ta có (f'(x)) xác định trên (left( 0;x_{0} right)) nên liên tục trên khoảng (left( 0;x_{0} right)).

+ Khi (x > x_{0}): (f(x) = x^{2} + 12) (Rightarrow f'(x) = 2x).

Ta có (f'(x)) xác định trên (left( x_{0}; + infty right)) nên liên tục trên khoảng (left( x_{0}; + infty right)).

+ Tại (x = x_{0}):

(lim_{x rightarrow x_{0}^{-}}frac{f(x) – fleft( x_{0} right)}{x – x_{0}} = lim_{x rightarrow x_{0}^{-}}frac{asqrt{x} – asqrt{x_{0}}}{x – x_{0}})(= lim_{x rightarrow x_{0}^{-}}frac{aleft( sqrt{x} – sqrt{x_{0}} right)}{x – x_{0}} = lim_{x rightarrow x_{0}^{-}}frac{a}{sqrt{x} + sqrt{x_{0}}} = frac{a}{2sqrt{x_{0}}})

(lim_{x rightarrow x_{0}^{+}}frac{f(x) – fleft( x_{0} right)}{x – x_{0}} = lim_{x rightarrow x_{0}^{+}}frac{x^{2} + 12 – left( x_{0}^{2} + 12 right)}{x – x_{0}})

(= lim_{x rightarrow x_{0}^{+}}frac{x^{2} – x_{0}^{2}}{x – x_{0}} = lim_{x rightarrow x_{0}^{+}}left( x + x_{0} right) = 2x_{0}).

Hàm số (f) có đạo hàm trên khoảng ((0; + infty)) khi và chỉ khi

(lim_{x rightarrow x_{0}^{-}}frac{f(x) – fleft( x_{0} right)}{x – x_{0}} = lim_{x rightarrow x_{0}^{+}}frac{f(x) – fleft( x_{0} right)}{x – x_{0}} Leftrightarrow frac{a}{2sqrt{x_{0}}} = 2x_{0}).

Khi đó (f’left( x_{0} right) = frac{a}{2sqrt{x_{0}}} = 2x_{0}) và (f'(x) = left{ begin{matrix} frac{a}{2sqrt{x}} khi 0 < x < x_{0} 2x khi x geq x_{0} end{matrix} right.) nên hàm số (f) có đạo hàm liên tục trên khoảng ((0; + infty)).

Ta có (frac{a}{2sqrt{x_{0}}} = 2x_{0} Leftrightarrow a = 4x_{0}sqrt{x_{0}}) ((1))

Mặt khác: Hàm số (f) liên tục tại (x_{0}) nên (x_{0}^{2} + 12 = asqrt{x_{0}}) ((2))

Từ ((1)) và ((2)) suy ra (x_{0} = 2) và (a = 8sqrt{2})

Vậy (S = a + x_{0} = 2left( 1 + 4sqrt{2} right)).

Câu 10. Cho hàm số (f(x) = (2018 + x)(2017 + 2x)(2016 + 3x)….(1 + 2018x)). Tính (f'(1)).

Lời giải

Chọn C

(f'(x) = (2017 + 2x)(2016 + 3x)….(1 + 2018x))(+ …(2018 + x)(2017 + 2x)(2016 + 3x)….2018 +)((2018 + x).2.(2016 + 3x)….(1 + 2018x)).

Suy ra

(f'(1) = 2019^{2017} + 2.2019^{2017} + 3.2019^{2017} + … + 2018.2019^{2017})

(= 2019^{2017}(1 + 2 + 3 + … + 2018))

(= 2019^{2017}.frac{2018.2019}{2} = 1009.2019^{2018}).

Previous Post

Top 30 Viết bài văn phân tích một tác phẩm văn học (thơ trào phúng)

Next Post

Thuyết trình tiếng anh là gì? Những mẫu câu giúp bạn ghi điểm tuyệt đối

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng

by Tranducdoan
03/02/2026
0
0

Giải sgk Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng Video Giải bài tập Toán 9 Bài 6:...

Lụt Nghề Hay Lục Nghề: Cách Khắc Phục Và Phát Triển Kỹ Năng Hiệu Quả

by Tranducdoan
03/02/2026
0
0

Trong tiếng Việt, hai cụm từ "lụt nghề" và "lục nghề" đều được sử dụng để chỉ tình trạng suy...

Nhà xe Trần Anh : Dịch vụ và lịch trình đi Hà Nội – Hà Tĩnh

by Tranducdoan
03/02/2026
0
0

Nhà xe Trần Anh Hiện nay, nhu cầu di chuyển từ Hà Tĩnh đến Hà Nội để làm việc và...

Dang tay hay giang tay đúng chính tả?

by Tranducdoan
03/02/2026
0
0

Dang tay hay giang tay chỉ khác nhau chữ d” và “gi” nên khiến nhiều người phân vân không biết...

Load More
Next Post

Thuyết trình tiếng anh là gì? Những mẫu câu giúp bạn ghi điểm tuyệt đối

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Bài toán lớp 1 tưởng dễ mà gây tranh cãi trên MXH: Cô giáo đã giải thích nhưng phụ huynh vẫn thắc mắc, "đăng đàn" hỏi đáp án

03/02/2026

Sảy thai tự nhiên là gì? Những yếu tố nguy cơ cần đặc biệt lưu ý

03/02/2026

Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng

03/02/2026
Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp 789bet https://pihu.in.net/ Ca Khia TV trực tiếp XoilacTV go 88
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.